рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Чем определяется число ядрышек в клетке

Чем определяется число ядрышек в клетке - раздел Биология, ЧАСТЬ I. Введение. Предмет клеточной биологии ГЛАВА 1. Клеточная теория Как Уже Говорилось, Все Клетки Имеют Обязательные Внутриядерные Структуры – Я...

Как уже говорилось, все клетки имеют обязательные внутриядерные структуры – ядрышки. Это правило имеет небольшое число исключений, которые, как будет видно, только подчеркивают важность и необходимость участия ядрышка в жизненных отправлениях клетки. К таким исключениям относятся клетки дробящихся яиц, где ядрышки отсутствуют на ранних этапах эмбриогенеза, или клетки, закончившие развитие и необратимо специализировавшиеся как, например, некоторые клетки крови.

В остальных случаях в клетках наблюдается 1-5 ядрышек, причем их количество не строго постоянно даже у одного и того же типа клеток. Более того в некоторых половых клетках (растущие ооциты) число ядрышек может достигать нескольких сот, т.е. на два порядка выше, чем в соседних соматических клетках. Это - т.н. амплификация ядрышек.

Еще в 30-х годах было сделано предположение, что число ядрышек зависит от числа "ядрышковых организаторов" - особых участков, на которых в телофазе происходит новообразование ядрышек интерфазного ядра. Часто ядрышковые организаторы локализованы во вторичных перетяжках хромосом (образуют вторичные перетяжки хромосом). Так у человека ядрышковые организаторы расположены в коротких плечах 13, 14, 15, 21 и 22 хромосом (10 на диплоидный набор) (рис. 82). У млекопитающих обычно имеется несколько ядрышкообразующих хромосом на диплоидный набор: у кошки - 2; у свиньи - 2; у мыши - 4; у коровы - 8. У хладнокровных позвоночных и у птиц обычно имеется только по одной паре ядрышкообразующих хромосом.

Таким образом максимальное число ядрышек в разных клетках определяется числом ядрышковых организаторов и увеличивается согласно плоидности ядра: в крупных полиплоидных ядрах всегда количество ядрышек больше.

Это правило подтверждается прямыми наблюдениями над мутантными особями с разным числом ядрышковых организаторов. Так у шпорцевой лягушки в норме в диплоидной клетке есть две ядрышкообразующих хромосомы и соответственно 1-2 ядрышка. У гетерозиготной особи с одной ядрышкообразующей хромосомой - 1, у гомозиготных мутантных личинок, у которых нет ядрышковых организаторов, ядрышки не возникают и не происходит синтеза рРНК. Сходные наблюдения были получены на дрозофилах с разным числом ядрышкообразующих хромосом от 0 до 4.

Локализация ядрышковых организаторов определяется довольно точно на митотических хромосомах с помощью окраски солями серебра, которые имеют специфическое сродство к некоторым ядрышковым белкам. Более точным является определение ядрышковых организаторов с помощью метода молекулярной гибридизации in situ. Так меченная тритием рРНК при контакте с денатурированной ДНК на препарате митотических хромосом образует ДНК-рРНК гибрид только в тех местах, где есть последовательности ДНК, комплементарные рРНК.

Чаще всего в клетках количество ядрышек меньше, чем число ядрышковых организаторов. Это связано с тем, что при новообразовании ядрышек они могут сливаться друг с другом в одну общую структуру, т.е. могут объединяться в пространстве интерфазного ядра отдельные ядрышковые организаторы разных хромосом. Так в тканях человека могут встречаться клетки с одним ядрышком. Это значит, что десять ядрышкообразующих участков, локусов, диплоидного набора хромосом входят в состав одного ядрышка. Слияние ядрышек друг с другом хорошо показано на живых клетках культуры ткани при цейтраферной киносъемке.

Множественность рибосомных генов

При изучении числа ядрышек при различных хромосомных абберациях было найдено, что при разрыве хромосомы на месте вторичной перетяжки ядрышки могут возникать на каждом из фрагментов хромосом. Так при обмене участками между двумя хромосомами в микроспороцитах кукурузы, в том случае когда разрыв одной из хромосом происходил через ядрышковый организатор, возникали две хромосомы, каждая из которых несла часть исходного ядрышкового организатора. В этом случае обе хромосомы обладали способностью образовывать ядрышки, хотя и в неодинаковой степени. Из этих наблюдений был сделан очень важный вывод (который полностью подтвердился в 60-х годах на молекулярно-биологическом уровне) о том, что ядрышковый организатор представляет собой не точечный локус хромосомы, а является множественным по своей структуре, содержит несколько одинаковых генных участков, каждый из которых отвечает за образование ядрышка.

Методом молекулярной гибридизации было показано, что в составе геномов эукариот рибосомные гены представлены сотнями и тысячами единиц; они принадлежат к фракции умеренно повторяющихся последовательностей ДНК. Даже у бактерий в геноме может быть несколько (6-7) рассеянных по геному идентичных последовательностей, ответственных за синтез рРНК. Общее количество этой фракции ДНК (рДНК) у E. coli составляет около 1% от всей ДНК. У эукариотических организмов этот процент может составлять 0,18 для X. laevis, 0,4 - для человека, 1,3 для дрозофилы, 5,5 для пекарских дрожжей. Число же рибосомных генов у эукариот намного больше, чем у прокариотических клеток. В табл. 10 приведены некоторые примеры числа генов рРНК у различных представителей эукариот.

Таблица 10. Количество рибосомных генов на гаплоидный набор хромосом

Хордовые Млекопитающие:     Птицы: Амфибии:     Рыбы:     Беспозвоночные Иглокожие: Насекомые:   Моллюски: Нематоды: Простейшие   Высшие растения:   Грибы:   Водоросли:   Слизневики:     Человек - 200 Мышь - 100 Кошка - 1000 Курица - 200 Тритон гребенчатый - 4100 Амфиума - 19600 Линь - 120 Лосось - 730 Неоцератод - 4800   Морской еж - 260 Сверчок домашний - 170 Шелкопряд тутовый - 240 Устрица - 220 Аскарида - 300 Эвглена - 800 Тетрахимена - 290 Фасоль - 2000 Кукуруза - 8500 Дрожжи пекарские - 140 Хламидомонада - 150 Ацетабулария - 1900 Диктиостелиум - 200 Физарум - 80

 

С помощью метода молекулярной гибридизации было проанализировано не только число рибосомных генов, но и их локализация. Из этих экспериментов следовало, что именно зоны ядрышковых организаторов во вторичных перетяжках хромосом Xenopus содержат рибосомные гены и что в каждом из этих организаторов содержится примерно по 300 генов, т.е. ядрышковые организаторы представляют собой полицистронные участки, содержащие множество одинаковых генов (полиизогенные участки). Следовательно, рибосомные гены собраны вместе в группы или кластеры.

Наблюдать непосредственно порядок расположения рибосомных генов на ДНК выделенных ядрышек с помощью электронного микроскопа удалось на дополнительных ядрышках ооцитов амфибий.

Амплифицированные ядрышки

Обычно число генов рибосомных РНК постоянно на геном, оно не меняется в зависимости от уровня транскрипции этих генов. Так у клеток с высоким уровнем метаболизма число генов рРНК точно такое же как и число у клеток, полностью прекративших синтез рибосом. При репликации ДНК в S-периоде происходит и удвоение числа генов рРНК, поэтому их количество коррелирует с плоидностью клетки.

Однако существуют случаи, когда гены рРНК подвергаются избыточной репликации. При этом дополнительная репликация генов рРНК происходит в целях обеспечения продукции большого количества рибосом. В результате такого сверхсинтеза генов рРНК их копии могут становиться свободными, экстрахромосомными. Эти внехромосомные копии генов рРНК могут функционировать независимо, в результате чего возникает масса свободных дополнительных ядрышек, но уже не связанных структурно с ядрышкообразующими хромосомами. Это явление получило название амплификации генов рРНК. Особенно подробно это явление изучено на растущих ооцитах амфибий, хотя оно встречается как у животных, так и у растений.

Так у X. laevis, наиболее подробно изученный и популярный объект, амплификация рДНК, происходит в профазе I деления созревания, когда синтез хромосомной ДНК давно закончен. В этом случае количество амплифицированной рДНК (или генов рРНК) становится в 3000 раз больше того, что приходится на гаплоидное количество рДНК, и соответствует 1,5 х 106 генов рРНК. Эти сверхчисленные внехромосомные копии и образуют сотни дополнительных ядрышек в растущих ооцитах. В среднем же на одно дополнительное ядрышко приходится несколько сот или тысяч генов рРНК.

Амплифицированные ядрышки встречаются также в ооцитах насекомых. Так у окаймленного плавунца в ооцитах обнаружено 3 х 106 экстрахромосомных копий генов рРНК.

Биологический смысл появления сверхчисленных экстрахромосомных ядрышек при росте ооцитов совершенно понятен: для синтеза огромного количества запасных продуктов, которые будут использованы на ранних стадиях эмбриогенеза, необходимо соответственно огромное количество рибосом, которые могут быть в клетке синтезированы на дополнительных матрицах этих многочисленных амплифицированных ядрышек. После периода созревания ооцита при его двух последовательных делениях эти дополнительные ядрышки в состав митотических хромосом не входят, они отделяются от новых ядер и деградируют. Следовательно, амплификация рДНК в ооците представляет собой временное явление, не сказывающееся на постоянстве генома.

У низших эукариотических организмов наблюдаются также экстрахромосомные ядрышки. Так у Tetrachymena pyriformis в составе гаплоидного генома микронуклеуса имеется только единственный ген рРНК. В макронуклеусе же этого организма содержится около 200 гаплоидных эквивалентов в виде экстрахромосомных копий. У дрожжевых клеток также обнаружены экстрахромосомные копии генов рРНК в виде циклических молекул ДНК длиной около 3 мкм, содержащих один ген рРНК.

Строение и функционирование генов рРНК

Итак, в ядрышковых организаторах определенных хромосом локализованы места множественных сгруппированных вместе генов рибосомной РНК. Но как уже говорилось, существует 4 типа молекул рибосоной РНК, каждый из которых в полной эукариотической рибосоме представлен один раз. Значит ли это, что для каждой из этих РНК (28S рРНК, 18S рРНК, 5,8S рРНК, 5S рРНК) должен существовать отдельный ген, было долгое время неясным. Не понятным было также, как осуществляется в клетках одновременное сбалансированное образование этих разных рРНК. Этот вопрос был решен при исследовании динамики синтеза рибосомных РНК. Было обнаружено, что при использовании импульсной короткой метки среди клеточных РНК обнаруживается быстро синтезирующая РНК с высокой скоростью седиментации, тяжелая 45S РНК. Если после появления этой 45S РНК продолжать наблюдать за распределением метки во фракциях РНК, но уже в отсутствие меченных предшественников, то можно видеть, что по мере убывания метки в зоне 45S РНК, она начинает появляться и стабильно накапливаться в зонах 28S, 18S и 5,8S рибосомных РНК. Эти данные говорили о том, что при синтезе рибосомных РНК сначала образуется гигантская молекула-предшественник (45S РНК), которая затем дает начало основным молекулам рибосомной РНК. Было найдено, что молекула 45S РНК содержит около 13 х 103 оснований, имеет массу около 4,6 х 106, и может быть длиной 2-5 мкм. Явление распада молекулы 45S рРНК на фрагменты, соответствующие размерам 28S, 18S и 5,8S РНК, получил название "процессинг" или созревание. Во время процессинга происходит разрыв предшественника на три фрагмента и кроме того наблюдается значительная деградация РНК (около 50%, т.е. 6000 нуклеотидов). Кроме этих данных было вычислено, что молекула 5S РНК синтезируется независимо от 45S РНК и локализация гена 5S рРНК не связана с ядрышковым организатором.

Почти одновременно с получением этих биохимических данных О. Миллеру (1969) удалось с помощью электронного микроскопа увидеть работающие рибосомные гены. Для этого были под световым микроскопом вручную выделены ядра из средних ооцитов тритона, микроиглами была разорвана ядерная оболочка и в микропипетку были втянуты многочисленные амплифицированные ядрышки. Такая капля, содержащая ядрышки и кариоплазму, была перенесена в раствор низкой ионной силы со щелочным значением среды. Этот раствор наслаивался на раствор сахарозы с формалином, находящийся в микроячейке центрифужной пробирки, на дне микроячейки помещалась сеточка с формваром для электронной микроскопии. Действие низкой ионной силы в щелочной среде приводило к набуханию и диспергированию выделенных ядрышек, они разрыхлялись настолько, что становились плохо различимыми в световом микроскопе. При центрифугировании такие набухшие ядрышки проходили через слой сахарозы, еще больше расправлялись и фиксировались в формалине. Наконец они достигали дна микроячейки и распластывались на формваровой подложке. После этого сеточки вынимались, обезвоживались, оттенялись металлом и просматривались в электронном микроскопе (рис. 83, 97а).

На таком препарате были видны сложно изогнутые и перепутанные длинные осевые молекулы ДНК, на которых через равные промежутки располагались фибриллярные зоны, имеющие вид "елочек". Длина фрагмента ДНК, занятого такой "елочкой" была постоянной и равнялась 5 мкм. На этом отрезке располагалось около 100 плотных гранул величиной около 20 нм, от каждой из которых отходила в сторону тонкая изогнутая нить. Величина такой нити была минимальной на одном конце такого отрезка и максимальной на другом. Эти извитые латеральные нити и образовывали структуру типа "елочки". Было доказано, что крупные гранулы на нити ДНК представляют собой молекулы РНК-полимеразы I, ответственной за синтез рРНК, а боковые изогнутые нити - транскрипты, состоящие из синтезируемых молекул РНК. Самые длинные транскрипты находились на одном конце "елочки", соответствовали 45S предшественнику рРНК. Следовательно, синтез рРНК начинался на конце отрезка с короткими боковыми нитями, и заканчивался на участке с длинными нитями РНК. Такой участок ДНК, на котором были видны молекулы рРНК в процессе их удлинения, получил название транскрипционной единицы. Между транскрипционными единицами располагались участки ДНК, лишенные гранул РНК-полимеразы I и транскриптов. Это - зоны т.н. спейсеров, которые не транскрибируются, и, более того, на таких препаратах они имеют нуклеосомное строение, тогда как транскрипционные единицы свободны от нуклеосом. Величина таких спейсерных участков может варьировать не только в данной клетке, но быть различной у разных видов. Длина боковых фибрилл была в 5-10 раз короче, чем 45S РНК, из-за того, что эта новосинтезированная РНК связана с белками, образуя рибонуклеопротеидный тяж, предшественник рибосом.

Исходя из этих работ стало ясно, что рибосомный ген состоит из двух участков: нетранскрибируемая последовательность ДНК (nts) - спейсер и транскрипционная единица. В состав транскрипционной единицы входят участки, соответствующие 28S, 18S и 5,8S рРНК, разделенные вставками, которые деградируют при процессинге 45S РНК.

Расшифровка структуры рибосомных генов различных эукариотических объектов показала удивительно универсальный тип их строения:

3' nts - промотор- tse - 18S рРНК - tsi1 - 5,8S рРНК - tsi2 - 28S рРНК 5'

где nts - нетранскрибируемые последовательности ДНК спейсерного участка, ts - транскрибируемые последовательности ДНК (внешняя и две внутренние), и участки, соответствующие зрелым рибосомным РНК. В состав транскрипционной единицы входит весь ген за исключением спейсерного участка. Такая структура рибосомного гена практически одинакова для всех эукариотических организмов (рис. 84). Вариабельными являются как нетранскрибируемые (спейсерные) участки, так и транскрибируемые вставки (ts), которые не входят в состав зрелых рРНК.

Итак три основные молекулы рРНК синтезируются на одной транскрипционной единице. Что же касается молекулы 5S рРНК, то она к этому гену никакого отношения не имеет: 5S рРНК синтезируется на отдельных генах, локализованных не в зонах ядрышковых организаторов, даже на совсем иных хромосомах при участии РНК-полимеразы III. Так у человека основная масса генов 5S рРНК находится на I хромосоме, более мелкие кластеры - на 9 и 16 хромосомах. У ксенопуса гены 5S рРНК расположены в теломерных участках большинства хромосом. Гены 5S рРНК, тоже множественные, также собраны в кластеры, но их число выше, чем у остальных генов рРНК. Так у человека их насчитывается до 2000, у ксенопуса - 24000, у гребенчатого тритона - 32000. Есть объекты и с меньшим их числом: Drosophila - 320; крыса - 830. У нейроспоры и дрожжей число генов 5S рРНК одинаковое с числом других рибосомных генов, т.к. участок 5S рРНК включен и транскрибируется в спейсерной зоне.

Транскрипция рРНК идет с помощью двух ферментов: РНК-полимеразы I, которая участвует в синтезе 45S предшественника рРНК и РНК-полимеразы III, ответственной за синтез 5S рРНК. Матрицей для синтеза рРНК по определению должна быть ядрышковая ДНК.

В изолированном р-хроматине обнаружены гистоны, негистоновые белки и белки рибосом. Так в р-хроматине обнаружены основные сердцевинные (коровые) гистоны, но их количество составляет только 40% по сравнению с таковым в тотальном хроматине.

Первичные транскрипты (морфологически представлены в виде латеральных филаментов на “елочках”, образующихся на активных транскрипционных единицах) прогрессивно увеличиваются в длину по мере прохождения РНК-полимеразы I вдоль всего транскрипционного участка гена, начиная с точки начала репликации до терминального участка. Скорость роста цепи пре-рРНК составляет около 20-30 нуклеотидов/сек., т.е. весь синтез 45S рРНК занимает около 5-10 минут.

На каждой транскрипционной единице располагается множество (50-100) молекул РНК-полимеразы I, тем самым на каждом гене одновременно происходит синтез множества молекул пре-рРНК, которые находятся на разных стадиях роста полинуклеотидной цепи (рис. 85). Максимальной величины пре-рРНК достигает вблизи терминального участка, где ее молекулярный вес достигает 4,5 х 106 Д (для млекопитающих), а длина должна соответствовать 5,2 мкм. На самом же деле длина латерального транскрипта в 5-10 раз короче этой величины. Это связано с тем, что по мере роста транскрипта он связывается сразу же с белками, образуя в конечном участке транскрипции рибонуклеопротеид с коэффициентом седиментации 80S. Такие 80S рРНП составляют до 20% от всех РНП ядрышка. Большая часть белков, которые связываются с 45S РНК являются белками, входящими в состав малой и большой субъединиц зрелых рибосом. Таким образом уже на уровне незрелой гигантской молекулы пре-рРНК происходит специфическое связывание с рибосомными белками: около 50% белков большой субъединицы и около 30% малой субъединицы связываются с пре-рРНК во время ее синтеза или вскоре после него. Такая связь 45S РНК с белками и приводит к тому, что латеральные транскрипты имеют толщину около 10 нм (после оттеснения металлами), на их свободном конце часто наблюдается крупная гранула (30 нм), что может указывать на высокую степень компактизации РНК и белка на 5’-конце цепи РНК.

Распад 45S РНК на более короткие отрезки, явление созревания рРНК или процессинг, происходит после завершения транскрипции. Ферментативный механизм этого явления еще до конца не ясен, в нем принимает участие эндо- и экзонуклеазы. При этом происходит последовательное расщепление пре-рРНК на фрагменты и частичная деградация участков РНК на этих фрагментах. В результате процессинга пре-рРНК примерно 50% нуклеотидов первично синтезированной молекулы отщепляется (мол. вес 45S РНК составляет 4,6 х 106, а суммарный мол. вес зрелых рРНК около 2,2 х 106) (рис. 86).

Таким образом, в ядрышке локализуются следующие основные предшественники рибосом: 1. Транскрипты рРНК в процессе их роста; 2. 80S РНП, содержащие 45S РНК, они могут составлять до 10-20% всех РНП ядрышка; 3. 55S РНП, предшественники большой субъединицы, могут составлять до 70-80% всех РНП ядрышка; время созревания большой рибосомной субъединицы занимает около одного часа; 4. Незрелые малые (40S РНП) субъединицы рибосом, быстро (за 15-30 мин) покидающие ядрышко.

В интенсивно функционирующих ядрышках происходит синтез огромного числа рибосом: 1500-3000 штук в минуту. Поэтому в ядрышке насчитывается около 5 х 104 предшественников рибосом.

Структура ядрышка

О тонком строении ядрышка сведения были получены главным образом методом электронной микроскопии. Световая микроскопия давала ограниченный набор сведений о структуре ядрышка из-за их малого размера (1-5 мкм) и недостаточной разрешающей способности данного метода. Из прижизненных наблюдений было видно, что ядрышки обладают высокой плотностью и высоким светопреломлением. В их структуре даже прижизненно видна некоторая неоднородность: описывались нитчатые (нуклеолонемы), гранулярные компоненты (нуклеолини), а также светлые зоны - “вакуоли”. Гистохимически в ядрышках выявлялась РНК, но не ДНК. ДНК в ядрышках выявлялась лишь в периферической их зоне в виде т.н. околоядрышкового хроматина, который мог прилежать к одной из сторон ядрышка, окружать его кольцом, или вообще отсутствовать. Считалось, что околоядрышковый хроматин представляет собой гетерохроматиновые зоны. Кроме того было найдено, что ядрышки имеют некоторое сродство к солям серебра, обладают аргентофилией, могут восстанавливать серебро из различных растворов (нитрат серебра, “аммиачное серебро”, протеинаты серебра). При этом происходит отложение темных осадков исключительно в ядрышках интерфазных клеток, а также в ядрышковых организаторах на митотических хромосомах при делении клетки.

Первые электронномикроскопические работы показали, что ядрышки самых различных объектов несмотря на их разнообразие, построены из одинаковых компонентов: гранулярного и фибриллярного (рис. 87). При этом гранулы в составе ядрышек имели размеры 15-20 нм и были несоизмеримо меньше тех “гранул”, что были видны в световом микроскопе. Кроме гранул в составе ядрышек обнаружили зоны скопления тонких (3-5 нм) фибрилл - диффузная часть ядрышек. Взаимное расположение гранулярных и фибриллярных зон в ядрышке может быть различным. Так, в некоторых случаях, фибриллярный компонент занимает центральную часть ядрышка в виде однородного образования (печень аксолотля, многие ядрышки растительных меристем) или в виде нескольких (3-5) отдельных зон (рис. 88).

Обычно гранулярный компонент (ГК) расположен на периферии ядрышка, но встречаются случаи, когда фибриллярный и гранулярный компонент распределены в ядрышке равномерно. Часто в структуре ядрышек фибриллярно-гранулярные компоненты образуют нитчатые структуры, нуклеолонемы (ядрышковые нити), толщиной около 100-200 нм. Эти нуклеолонемы при достаточном контрастировании могут быть видны даже в световом микроскопе. Ядрышковые нити или нкулеолонемы также неоднородны по своему строению: в них кроме гранул 15 нм, входит множество тонких фибрилл, которые могут образовывать в нуклеолонемах отдельные сгущения.

Неоднородной оказалась структура и диффузного, фибриллярного компонента. Было найдено, что практически во всех типах ядрышек как животных, так и растительных объектов встречаются т.н. фибриллярные центры (ФЦ), участки скопления фибрилл с низкой электронной плотностью, окруженные зоной фибрилл более высокой электронной плотности - плотный фибриллярный компонент (ПФК).

Кроме гранул и фибриллярных участков в структуре ядрышка обнаруживаются хроматиновые компоненты: такие как околоядрышковый хроматин, который может примыкать к ядрышку и даже окружать его. Часто 30 нм фибриллы хроматина по периферии ядрышка заходят в лакуны, между нуклеолонемными участками.

Наконец, в составе ядрышка выявляется белковый остов, матрикс. На ультратонких срезах необработанных ядрышек матрикс не выявляется в виде отдельного компонента, но если экстрагировать из ядрышек РНК, ДНК и белки, связанные с ними, то можно видеть, что ядрышко как таковое, не распадается, не теряет своей общей формы. После таких обработок структура ядрышка представлена рыхлой фибриллярной сетью, заполняющей объем ядрышка.

Таким образом, в структуре ядрышек можно различить следующие пять компонентов: гранулярный, фибриллярные центры, плотный фибриллярный компонент, хроматин, белковый сетчатый матрикс.

Каким же образом распределены внутри ядрышек рДНК, рРНК и белки, где располагаются матрицы для синтеза рРНК, где первичные транскрипты, где предшественники рибосом, зрелые рибосомы - все эти вопросы были решены с применением самых разнообразных молекулярно-биологических и цитологических методов. Один из этих методов, - метод регрессивного окрашивания нуклеиновых кислот, основан на том, что ионы уранила, связанные с ДНК, более легко вымываются со срезов при обработке их хелатоном ЭДТА, чем ионы, связанные с РНК. Это позволяет различить в ядре плотные окрашенные структуры, содержащие РНК и структуры потерявшие окраску, те что содержат ДНК. Так в разнообразных ядрах участки хроматина как конденсированного, так и диффузного теряют окраску, а компоненты, содержащие РНК - сохраняют. В ядре при этом контрастно выделяются разнообразные РНП, содержащиеся в основном объеме ядра и ядрышка. При этом в ядрышках интенсивно окрашены многочисленные гранулы, они окрашены так же, как рибосомы цитоплазмы. Окрашенным является плотный фибриллярный компонент, фибриллярные центры окрашены слабее, а внутриядрышковый и околоядрышковый хроматин выглядят светлыми. Следовательно можно предположить, что как гранулярный компонент, который скорее всего представляет субъединицы рибосом, так и плотный фибриллярный компонент содержат РНК.

Так при короткой пульсовой метке тритированным уридином (3H-уридин), первые следы мечения обнаруживались сначала (через 1-15 мин) в плотном фибриллярном компоненте (ПФК), а затем (до 30 мин) меченым оказывался гранулярный компонент (ГК). Важно отметить, что в фибриллярных центрах (ФЦ) метка не обнаруживалась. Из этого наблюдения был сделан вывод, что 45S пре-рРНК синтезируется в области плотного фибриллярного компонента, а гранулярный компонент ядрышка соответствует прерибосомным частицам (55S-, 40S РНП).

Оставался открытым вопрос о природе фибриллярных центров, окруженных плотными РНК-содержащими фибриллами. Было обнаружено с помощью различных методов (специфическое окрашивание с помощью осмий-амина, ДНКазы, меченной золотом, связыванием меченого актиномицина, прямой молекулярной гибридизацией с меченой рДНК), что в составе фибриллярных центров находится ДНК, ответственная за синтез рРНК. Зоны фибриллярных центров отличаются от остального хроматина тем, что состоят из тонких хроматиновых фибрилл, значительно обедненных гистоном HI (что показано с помощью меченных коллоидным золотом антител).

Эти исследования позволили связать друг с другом данные молекулярной организации транскрибируемых рибосомных генов с данными морфологии ядрышек и выяснить топологию в объеме ядрышка процесса синтеза рибосомной РНК и образования рибосом.

По модели, предложенной Жоссеном (1984), в фибриллярных центрах расположены неактивные рибосомные гены и, возможно, спейсерные участки. Транскрипция пре-рРНК происходит по периферии фибриллярных центров, где плотный фибриллярный компонент и представляет собой 45S пре-рРНК, располагающиеся в виде “елочек” на деконденсированных участках рДНК (рис. 89). После завершения транскрипции 45S РНК теряет связь с транскрипционной единицей на ДНК в зоне плотного фибриллярного компонента, каким-то еще непонятным образом переходит в гранулярную зону, где и происходит процессинг рРНК, образование и созревание рибосомных субъединиц.

Фибриллярный центр и ядрышковый организатор

Строение и химические характеристики ФЦ оказались практически одинаковыми с таковыми ядрышковых организаторов митотических хромосом. И те и другие построены из тесно ассоциированных фибрилл, толщиной 6-10 нм; и те и другие обладают характерной особенностью - окрашиваться солями серебра, что зависит от наличия особых ядрышковых белков, содержат РНК-полимеразу I.

Однако число ФЦ в интерфазных ядрышках, не соответствует числу ядрышковых организаторов в митозе. Так в клетках культуры СПЭВ число ФЦ может быть в 2-4 раза выше, чем число ядрышковых организаторов (см. табл. 11).

Таблица 11. Количество ядрышек (ЯК), фибриллярных центров (ФЦ) в G0- и G2-периодах и во время митоза

  Среднее число ЯК Среднее число ФЦ Общий объем ЯК, мкм3 Общий объем ФЦ, мкм3 Средний объем одного ФЦ, мкм3
G0-период 2,3 8,05 0,212 0,033
G2-период 2,3 33,7 23,43 0,430 0,014
Митоз - 6-8 - 0,2 0,025

 

Более того, количество ФЦ возрастает по мере увеличения плоидности клетки (G2, 4n) и транскрипционной ее активности. При этом уменьшается величина каждого отдельного фибриллярного центра. Однако суммарные объемы ФЦ при пересчете на гаплоидный хромосомный набор остаются постоянными в интерфазе, но превышают это число вдвое по сравнению метафазой. Другими словами при активации синтеза рРНК наблюдается такое изменение числа ФЦ и их размеров, которое может говорить о какой-то фрагментации исходных ФЦ в относительно мало активных ядрышках.

Противоположная картина наблюдается при затухании синтетических процессов в дифференцирующихся клетках эритроидного ряда мышей (табл. 12). При этом видно, что в размножающихся и активно синтезирующих гемоглобин проэритробластах количество фибриллярных центров зависит от плоидности клетки (88 в G1-фазе, 118 в G2-фазе клеточного цикла), размер индивидуальных ФЦ изменяется мало. После прекращения размножения этих клеток и падении их синтетической активности резко меняются параметры ядрышка. Их объем, уже начиная со стадии базофильного эритробласта уменьшается в 4-5 раз, а на конечной стадии дифференцировки (нормобласт) - в сотню раз. При этом резко падает число ФЦ (10-40 раз) и возрастает объем почти в 10 раз величины отдельного фибриллярного центра.

 

Таблица 12.Количество фибриллярных центров (ФЦ) и значения их размеров при эритропоэзе в печени зародышей мыши

 

Стадия дифферен-цировки Средний объем ядрышек, мкм3 Среднее кол-во ФЦ Средний диаметр ФЦ, мкм3 Средний объем ФЦ, мкм3 Суммарный объем ФЦ, мкм3
Проэритробласт (2 с ДНК) 17,7 0,2 0,0042 0,369
Проэритробласт (4 с ДНК) 29,4 0,23 0,0064 0,749
Базофильный эритробласт (2 с ДНК) 4,5 0,35 0,0248 0,170
Полихромато-фильный эритробласт (2 с ДНК) 0,5 4,3 0,4 0,0259 0,110
Нормобласт (2 с ДНК) 0,102 2,7 0,42 0,04 0,102

 

Исходя из этих наблюдений можно так представить общую схему активации и инактивации ядрышка (рис. 90) на примере одного ядрышкового организатора.

В неактивной форме ядрышковый организатор представлен в виде одного крупного фибриллярного центра, включающего в себя компактно уложенную часть цепи хромосомной ДНК, несущей тандемно расположенные рибосомные гены (транскрипционные единицы). В начале активации ядрышка происходит деконденсация р-генов на периферии такого фибриллярного центра, эти р-гены начинают транскрибироваться, на них образуются РНП-транскрипты, которые при созревании дают начало появлению гранул - предшественников рибосом по периферии активированного ядрышка. По мере усиления транскрипции единый фибриллярный центр как бы распадается на ряд более мелких фибриллярных центров, связанных друг с другом полностью декомпактизованными участками рДНК. Чем выше транскрипционная активность ядрышка, тем больше число мелких, связанных друг с другом фибриллярных центров, окруженных плотным фибриллярным компонентом (ПФК), содержащим 45S рРНК. При полной активации ядрышка все мелкие фибриллярные центры деконденсируются; в этом случае зоны плотного фибриллярного компонента содержат всю рДНК, находящуюся в активном состоянии. Такая структура наблюдается у амплифицированных ядрышек растущих ооцитов. В случае инактивации ядрышка происходит постепенная конденсация рДНК, снова образуются фибриллярные центры, они объединяются друг с другом, величина их растет параллельно уменьшению доли ПФК. При полной инактивации, как в случае нормобластов, ядрышко представлено одним крупным (4-5 мкм) сферическим ФЦ, без сопутствующего транскрипции ПФК: оно окружено зоной конденсированного хроматина. Такое инактивированное ядрышко сходно по своим структурным особенностям с ядрышковым организатором в составе митотических хромосом.

Структурные типы ядрышек

Приведенные выше описания дают основу для понимания разнообразия строения ядрышек в клетках с соответствующим уровнем синтеза рРНК. Однако кроме различной степени выраженности гранулярного и фибриллярных компонентов существуют и иные варианты структурной организации ядрышек. Обычно различают несколько структурных типов ядрышек: ретикулярный или нуклеолонемный, компактный, кольцевидный, остаточный (покоящийся), сегрегированный (рис. 91).

Ретикулярный тип ядрышка наиболее характерен для большинства клеток, для него свойственно нуклеолонемное строение, обилие гранул и фибриллярного плотного материала. Во многих случаях фибриллярные центры выявляются плохо, вероятно из-за высокого уровня транскрипции. Этот тип ядрышек встречается в клетках животных и растений. Так, например, ретикулярный тип ядрышка, свойственный гигантским политенным хромосомам двукрылых насекомых, очень сходен с таковым на гигантских хромосомах антиподиальных клеток ячменя.

Компактный тип ядрышка отличается от предыдущего меньшей выраженностью нуклеолонемы, большей частотой встречаемости фибриллярных центров. Такие ядрышки характерны для активно размножающихся клеток (клетки растительных меристем, клетки культуры ткани и др.). Вероятно, что оба эти типа могут переходить друг в друга, во всяком случае, они чаще всего встречаются в клетках с высоким уровнем синтеза РНК и белка.

Кольцевидные ядрышки встречаются в клетках животных. В световом микроскопе они имеют форму кольца с оптически светлой центральной зоной - это фибриллярный центр, окруженный РНП-фибриллами и гранулами. Размер этих ядрышек составляет около 1 мкм. Типичные кольцевидные ядрышки характерны для лимфоцитов, эндотелиоцитов,т.е. для клеток с относительно низким уровнем транскрипции.

Остаточные ядрышки характерны для клеток полностью потерявших способность к синтезу рРНК (нормобласты, дифференцированные энтероциты, клетки шиповатого слоя кожного эпителия и др.). Часто они настолько малы и так окружены конденсированным хроматином, что с трудом обнаруживаются в световом микроскопе. В ряде случаев они могут снова активироваться и переходить в компактную или ретикулярную форму.

Сегрегированные ядрышки характерны для клеток, обработанных различными антибиотиками или химическими веществами, вызывающими прекращение синтеза рРНК (актиномицин Д, амфотерицин и др.), а также антибиотиками, влияющими на синтез ДНК и белков (митомицин, пуромицин, многие канцерогены и т.д.). Термин “сегрегация” используется в данном случае в связи с тем, что происходит как бы разделение, обособление разных компонентов ядрышек, сопровождающиеся прогрессивным уменьшением его объема. При этом обособляются друг от друга крупные фибриллярные центры и гранулярно-фибриллярный компонент.

Белки ядрышек

До 60% сухого веса выделенных ядрышек приходится на белки, число которых может составлять несколько сот разных видов. Помимо белков ассоциированного с ядрышками хроматина в состав ядрышек входят белки рибосом и специфические ядрышковые белки, связанные с транскрипцией рибосомных генов, с процессингом 45S рРНК, такие как РНК-полимераза I, факторы транскрипции, топоизомеразы, метилазы, нуклеазы, протеинкиназы, фосфатазы. Часть ядрышковых белков имеет сродство к серебру, - аргентофильные белки: РНК-полимераза I, фактор транскрипциии UBF, нуклеолин (С-23), нуклеофозмин (ньюматрин или В-23).

Аргентофилия характерна для белков, обогащенных сульфгидрильными, дисульфидными связями. Как уже указывалось, четкой аргентофилией обладают интерфазные ядрышки и зоны ядрышковых организаторов на митотических хромосомах.

Собственно ядрышковые белки расположены в специфических местах их активности. Так РНК-полимераза I и фактор транскрипции рРНК UBF располагаются в фибриллярных центрах (ФЦ) и/или в плотном фибриллярном компоненте (ПФК).

Ag-фильным является также белок с мол. весом 195 кДа, представляющий собой большую субъединицу РНК-полимеразы I, участвующую в синтезе рРНК. Этот белок локализуется в зоне фибриллярных центров, по их периферии. На плоскостных препаратах ядрышек аргентофилией обладают участки над осевой частью «елочек», непосредственно над расположением гранул РНК-полимеразы I. Кроме того, с помощью иммуноморфологических методов РНК-полимераза I обнаруживается в зоне ядрышковых организаторов митотических хромосом. Это обстоятельство не противоречит данным о том, что во время митоза транскрипция полностью прекращается. Вероятно, что во время митоза гены, нагруженные неактивной РНК-полимеразой I, переносятся весте с нею в области ядрышковых организаторов из одной клеточной генерации в другую.

Специфический для ядрышек белок фибрилларин (В-36, м.в. 34 кДа) располагается в ПФК, где он осуществляет процессинг пре-рРНК в комплексе другими РНП, в состав которых входит U3 мяРНК, необходимая для начального этапа процессинга 45S рРНК. Фибрилларин обнаруживается также в остаточных ядрышках – в «ядрышковом матриксе».

Белок С23 (110 кДа) или «нуклеолин» локализуется в зоне плотного фибриллярного компонента и в фибриллярных центрах ядрышек, но также и в зонах ядрышковых организаторов митотических хромосом. Следовательно он обнаруживается как на транскрибируемых, так и на неактивных участках рибосомных генов. В препаратах распластанных ядрышек он обнаруживается над транскрипционными единицами («елочками»), он обнаружен во фракциях, содержащих предшественники рибосом. Функции его до конца не ясны, хотя стало известно, что белок С23 может играть важную структурную роль в процессе транскрипции: он своим N-концом, на котором находятся лизиновые группы, связывается с ядрышковым хроматином, а C-концом с транскрибируемым спейсером (tsi) на 45S рРНК.

Обнаружено, что этот белок связывается не с ДНК транскрипционной единицы, а с ДНК, имеющей нуклеосомное строение (вероятно со спейсерными участками).

Белок В-23 (нуклеофозин, м.в. 37 кДа) с помощью иммуноцитохимических методов локализован в области ПФК и, главным образом, в зоне гранулярного компонента. Считается, что В-23 участвует в промежуточных и терминальных стадиях биогенеза рибосом, и в транспорте пре-рибосом.

Общая схема работы ядрышка как специального локуса синтеза рибосом

При становлении синтеза рРНК в ядрышках на поверхности ФЦ происходит активация транскрипционных единиц, - связывание с факторами транскрипции и РНК_полимеразой I, которая начинает считывать первичный транскрипт рРНК. По мере прохождения первой РНК-полимеразы I, на освобождающемся участке транскрипционной единицы садится следующая РНК-полимераза и начинается синтез новой рРНК. Одновременно и последовательно на одном р-гене могут находиться до сотни РНК-полимераз I, от которых отходят транскрипты разной степени завершенности. Конечным продуктом является пре-рРНК или 45S рРНК. По мере синтеза растущие цепи рРНК одеваются рибосомными белками, поступающими в ядро из цитоплазмы, так что сразу образуются цепи РНП-предшественников. Совокупность продуктов транскрипции нескольких транскрипционных единиц образует вокруг ФЦ зону ПФК. Конечным продуктом такого синтеза является рибонуклеопротеидный тяж, или глобула, имеющая константу седиментации около 80S, содержащая одну молекулу 45S рРНК. После отделения 45S рРНК в терминальной точке транскрипционной единицы происходит расщепление – процессинг 45S рРНК, в конце которого образуются 40S и 60S рибосомные субъединицы. Синтез малых субъединиц в ядрышке занимает примерно 30 мин, а больших – около 1 ч. В ядрышке незрелая 60S рибосомная субъединица, коме двух фрагментов рРНК (28S и 5,8S) связывается с третьим (5S), который синтезировался независимо от хромосом с ядрышковыми организаторами на других хромосомах. Такие новообразованные рибосомные субъединицы особым образом выходят из ядра в цитоплазму через ядерные поры. В цитоплазме такие незрелые рибосомы могут связаться с дополнительными белками. 40S субъединица сначала связывается с иРНК, и только затем с большой 60S субъединицей, образуя полную 80S функционирующую рибосому (рис. 92).

Новые, неканонические функции ядрышек

Последние данные показывают, что кроме синтеза рРНК, ядрышко участвует во многих других аспектах экспрессии генов.

Первые намеки (1965) на признаки полифункциональности ядрышек были получены при изучении гетерокарионов. Так при слиянии человеческих клеток HeLa с эритроцитами кур были получены гетерокарионы с первоначально совершенно разными ядрами. Ядра клеток HeLa были функционально активны, в них шел синтез разнообразных РНК. Исходные ядра эритроцитов кур содержали сверхконденсированный хроматин, не содержали ядрышек и не транскрибировались. В гетерокарионе после слияния с HeLa клетками в ядрах эритроцитов кур хроматин начинал деконденсироваться, активировалась транскрипция, появлялись ядрышки. Иммуноцитохимическими методами изучалось появление в гетерокарионах белков, характерных для куриных клеток. Несмотря на то, что в клетках HeLa была готовая система функционирования рибосом и были сформированы ядрышки, появление куриных белков было отложено до тех пор пока не возникнут ядрышки в ядрах эритроцитов. Это означало, что ядрышко куриного эритроцита как-то должно вовлекаться в образование куриных иРНК, т.е. ядрышко должно играть какую-то роль в продукции куриных иРНК.

Позднее были накоплены данные в поддержку этой возможности. Было обнаружено, что созревание (сплайсирование, см. ниже) c-myc иРНК в клетках млекопитающих происходит в ядрышках. В ядрышках обнаружены сплайсосомные малые РНК (sn РНК), факторы сплайсинга пре-иРНК.

Далее в ядрышках обнаруживаются РНК, входящие в SRP-частицы, участвующие в синтезе белков в эндоплазматическом ретикулуме. С ядрышком оказалась ассоциирована РНК теломеразы – рибонуклеопротеида (обратная транскриптаза). Много есть данных о локализации в ядрышках прцессинга малых ядерных РНК, входящих в состав сплайсосом, и даже о процессинге тРНК.

Ядрышко во время митоза: периферический хромосомный материал

В световом микроскопе ядрышко выявляется во время интерфазы, в митотических клетках оно исчезает. При использовании цейтраферной микрокиносъемки можно наблюдать в живых клетках как по мере конденсации хромосом в интерфазе происходит исчезновение ядрышка. Сначала оно слегка уплотняется, но затем ко времени разрыва ядерной оболочки начинает быстро терять плотность, становится рыхлым и на глазах быстро исчезает, как бы тает. При этом видно, что часть ядрышкового материала растекается между хромосомами. В метафазе и анафазе ядрышки как таковые отсутствуют. Первые признаки новых ядрышек появляются после средней телофазы, когда уже достаточно разрыхлились хромосомы дочерних ядер, имеющие новую ядерную оболочку. В это время вблизи деконденсирующихся хромосом появляются плотные тельца – предъядрышки. Обычно их число выше, чем число ядрышка в интерфазе. Позднее уже в G1-периоде клеточного цикла предъядрышки растут, начинают объединяться друг с другом, их общее число падает, но суммарный объем возрастает. Общий объем ядрышка удваивается в S-G2-фазах. В некоторых случаях в профазе (культуры клеток человека) при конденсации хромосом крупные ядрышки распадаются на более мелкие, которые в митозе исчезают.

На самом деле никакого полного исчезновения, или «растворения» ядрышка нет: происходит изменение его структуры, редукция одной части его компонентов при сохранении другой. Так было показано, что аргентофильные гранулы в интерфазных ядрышках, обнаруживаемые в световом микроскопе начинают в профазе сливаться друг с другом, одновременно уменьшаясь в объеме, минимальный размер они занимают в метафазе, локализуясь в зонах ядрышковых организаторов хромосом. В таком виде они существуют до средней телофазы, когда выявляются в виде отдельных множественных «предъядрышек», разбросанных среди деконденсированных хромосом. Уже в конце телофазы такие аргентофильные предъядрышки начинают расти. Таким образом можно видеть, что во время митоза исчезновению подвергается только часть ядрышкового компонента, в то время как аргентофильный компонент сохраняется, постоянно существует во время митоза и переносится на хромосомах в дочерние ядра.

Радиоавтографическими исследованиями было показано, что исчезновение ядрышек совпадает с прекращением синтеза клеточной (в основном рибосомной) РНК, который возобновляется в поздней телофазе, совпадая по времени с появлением новых ядрышек.

Кроме того было обнаружено, что активность РНК-полимеразы I также исчезает на средних стадиях митоза. Это давало основание считать, что новообразование ядрышек связано с восстановление синтеза рРНК в дочерних клетках.

Но с другой стороны существуют факты, указывающие на перманентное, постоянное присутствие ядрышковых компонентов течение всего клеточного цикла. Это относится к Ag-фильному материалу ядрышек в первую очередь.

Цитологи начала ХХ века часто наблюдали во время митоза появление какого-то нехроматинового материала, окружающего каждую хромосому. Этот материал или «матрикс» митотических хромосом, как считали, мог иметь ядрышковое происхождение и его роль могла заключаться в том, что он может служить источником новых ядрышек в дочерних ядрах после митоза.

Электронная микроскопия показала, что «матрикс» – нехроматиновый компонент митотических хромосом, состоящий из скопления рыхло расположенных фибрилл и гранул, имеющих рибонуклеопротеидную природу, морфологически сходных с компонентами, входящими в состав интерфазных ядрышек, выявляется в условиях конденсации митотических хромосом как растительного, так и животного происхождения. При этом некоторые компоненты ядрышек диссоциируют и уходят в цитоплазму (большая часть РНП-частиц), в то время как другие тесно связываются с поверхностью хромосом, образуя основу «матрикса» или, как этот компонент теперь называют, основу периферического хромосомного материала (ПХМ) (рис. 93). Этот фибриллярно-гранулярный материал, синтезированный до митоза, переносится хромосомами в дочерние клетки. В ранней телофазе еще в отсутствие синтеза РНК по мере деконденсации хромосом происходит структурное перераспределение компонентов ПХМ. Его фибриллярные компоненты начинают собираться в мелкие ассоциаты – предъядрышки, которые могут сливаться друг с другом, собираться в зоне ядрышкового организатора хромосом в поздней телофазе, где возобновляется транскрипция рРНК.

Новый этап в изучении периферического материала митотических хромосом связан с использованием иммуноцитохимических методов выявления ядрышковых белков. Было показано, что митотические хромосомы действительно участвуют в переносе в дочерние клетки белков ядрышек, белков ядерного остова, так и различных РНП. Так было установлено, что ядрышковые белки, участвующие в транскрипции рРНК (РНК-полимераза I, топоизомераза I, фактор инициации транскрипции UBFи др.), аккумулируются в зоне ядрышкового организатора, в то время как белки, связанные с процессингом пре=рРНК (фибрилларин, нуклеолин, В-23), а также некоторая часть пре-рРНК и малые ядрышковые РНП переносятся поверхностью хромосом в составе периферического хромосомного материала (рис. 94).

Кроме того в состав ПХМ могут входить некоторые негистоновые белки из состава ядерного интерфазного остова (рис.95).

Следовательно митотические хромосомы участвуют не только в их главной функции – перенос генетического материала в виде ДНК – но, кроме того, участвуют в переносе целого ряда белков и РНК (рис. 96).

Биологический смысл появления ПХМ на поверхности митотических хромосом может заключаться в том, что переносимые хромосомами белки не являются случайными «пассажирами», а представляют собой комплекс белков разного происхождения: ферменты и факторы ядрышковой транскрипции, процессинга рРНК, сборки рибосом, незрелые предшественники рибосом и, кроме того, белки ядерного и ядрышкового матрикса, также содержащие малые ядерные РНП и все компоненты, связанные с образованием нерибосомных РНК, с их сплайсингом и др. Другими словами, ПХМ переносит в новые ядра многие белковые компоненты и ферменты, что создает условия, необходимые для форсированного возобновления синтеза и созревания как рибосом, так и синтеза информационных РНК. Митотическая хромосома переносит в новое ядро не только генетическую информацию в виде ДНК хроматина, но и необходимые компоненты синтетического аппарата, готового к активации транскрипции в новом клеточном цикле. Хромосома при клеточном делении»все свое несет с собой» – как гласит латинская поговорка.

Глава 9. Нерибосомные продукты клеточного ядра

Транскрипция нерибосмных генов

Информационные РНК образуются при участии РНК-полимеразы II,

начинающей синтез со стартовой точки транскрипционной единицы, и кончая его в точке терминации. При этом образуется одна молекула РНК, транскрипт – предшественник информационной РНК. Размер транскрипционных единиц разных генов может значительно варьировать от 6 тыс. до 200 тыс. нуклеотидов. Поэтому суммарная фракция РНК, синтезированная на разных генах содержит молекулы различной длины. Эта первично синтезированная РНК или т.н. гетерогенная ядерная РНК (гяРНК), встречается только в ядре и не обнаруживается в цитоплазме. В цитоплазму попадает уже информационная РНК, образующаяся в результате изменений в ядре первичных транскриптов РНК (гяРНК).

Величина гяРНК в несколько раз больше той, которая требуется для синтеза белков: для синтеза «среднего белка», состоящего из 400 аминокислот, необходима матричная РНК в 1200 нуклеотидов. На самом деле величины информационных РНК в составе синтезирующих белок полисом в несколько раз короче первичных транскриптов. Это укорочение является результатом «созревания» гяРНК, процессинга, но иного характера, чем процессинг рибосомных РНК. Структура гена эукариотов оказалась состоящей из чередующихся последовательностей нуклеотидов, т.н. экзонов и интронов. Экзоны – участки ДНК, которые обладают кодирующей информацией и входят в состав информационных РНК, а интроны содержат последовательности, не входящие в информационную РНК. Первичный транскрипт РНК содержит полную копию гена, включает в себя все последовательности и экзоны и интроны. Интроны впоследствии вырезаются из первичного транскрипта, концы же фрагментов РНК сшиваются ковалентно, что приводит к общему укорачиванию образовавшейся молекулы информационной РНК. Этот процесс получил название сплайсинга. Так как большинство генов млекопитающих содержит большее число интронов, чем экзонов, процесс сплайсинга РНК приводит к тому, что очень длинные молекулы гяРНК (первичных транскриптов, содержащих более чем 50 000 нуклеотидов) укорачиваются до длины цитоплазматических иРНК (обычно от 500 до 3000 нуклеотидов длиной) (рис. 97).

По мере синтеза и роста гяРНК, она связывается с рядом ядерных белков, образуя гяРНП-частицы (гетерогенные ядерные рибонуклеопротеиновые частицы). При этом высокомолекулярная гяРНК в ядрах наматывается на глобулярные белковые частицы, информоферы. На каждый информафер приходится отрезок РНК длиной около 500-600 нуклеотидов. Такой комплекс информофера и РНК образует мономер или 30S частицу. В состав каждого информофера входит более 30 белковых молекул информатина. Таким образом первичный транскрипт структурного гена, отвечающего за образование информационной РНК, представляет собой гигантскую молекулу гяРНК, связанную со множеством белковых частиц, информофер. Считается, что участки гяРНК, между информоферами, могут быть использованы для сплайсинга с помощью специальных белковых комплексов – сплайсосом. В состав сплайсосом входит 5-7 малых ядерных рибонуклеопротеидов (snRNP).Эти особые малые ядерные РНП (мяРНП) представляют собой РНП-частицы (U1, U2, U5, U4, U6 snRNP) с константой седиментации около 10S. В каждой частице содержится одна малая молекула РНК (90-400 нуклеотидов) и около семи молекул белка. Так что сплайсосома представляет собой крупный рибонуклеопротеидный комплекс величиной, сравнимой с рибосомой (константа седиментации около 60S).

При синтезе гяРНК и после него сплайсосомы связываются с цепью РНК в местах на границе между экзонами и интронами, специфически узнавая эти места, производят разрыв в основании петлиинтрона, сшивают свободные концы (рис. 98). Таким способом участки интронных последовательностей вычленяются из состава первичного транскрипта, а затем быстро деградируют в ядре. В результате этого процесса длина результирующей молекулы РНК может укорачиваться в несколько раз. Так, например, размер гена белка тироглобулина включает 300 тыс. нуклеотитов, размер же иРНК для этого белка составляет всего 8,7 тыс. нуклеотидов из-за того, что в составе гена включены 36 интронных последовательностей, т.е. происходит укорочение молекул РНК более чем в 30 раз. Размер гена каталазы равен 34 т.п.н., а размер иРНК – 1,6 т.п.н. Величина овальбуминового гена у птиц составляет 7,5 т.п.н., а соответствующая этому гену зрелая иРНК – всего 1,8 т.п.н. Обычно иРНК в 2,5-10 раз короче первичного транскрипта, гяРНК.

Считается, что после созревания иРНК, при переходе ее из ядра в цитоплазму теряет белки, входящие в состав информофера, «переодевается» в ядерной поре, а белки информофер остаются в ядре. В цитоплазме иРНК снова одеваются новыми белками,образуя «информосомы» – форму хранения иРНК в неактивном состоянии, или связываются с белками, необходимыми для трансляции.

Морфология РНП-компонентов в ядре

Вся информация, полученная о морфологии транскриптов рРНК и иРНК, об информоферах и сплайсосомах получена на изучении выделенных из ядер этих компонентов, подвергнутых специальной обработке для распластывания их на препаратах для электронной микроскопии.

Что же касается морфологии РНП-продуктов in situ, в объеме интактных ядер, то здесь информация неполная и противоречивая.

Кроме хорошо выраженного ядрышка, другие продукты ядерной активности при изучении клеток на ультратонких срезах не бросаются в глаза: их трудно отличить от различных фибрилл (ДНП, матрикс)и каких-то гранул, казалось бы без особого порядка разбросанных в ядре. Все же, используя метод избирательного контрастирования солями урана структур, содержащих РНК, удается выделить ряд компонентов, которые можно отнести к неядрышковым продуктам транскрипции. Это – перихроматиновые фибриллы, перихроматиновые гранулы и интерхроматиновые гранулы (рис. 99б, 100).

Перихроматиновые фибриллы обнаруживаются по периферии участков конденсированного хроматина (околомембранного или любого другого). Они имеют толщину около 3-5 нм, часто образуют рыхлую неправильную сеть. Оказалось, что этот компонент ядра сильно изменяется при стимуляции синтеза РНК. Так, при возрастании синтеза РНК в клетках печени крыс после голодания и последующего питания или после введения кортизона адреналэктомированным животным зоны перихроматиновых фибрилл значительно увеличиваются. Эти зоны оказались наиболее активными по включению меченых предшественников в РНК, что было показано радиоавтографически с помощью электронного микроскопа. Такие фибриллы могут представлять новосинтезированную гяРНК.

Другой тип РНК-содержащих структур интерфазного ядра - перихроматиновые гранулы. Они имеют диаметр около 45 нм и окружены светлым ореолом. Эти гранулы встречаются только на периферии конденсированного хроматина, в диффузном хроматине их нет. Считается, что между этими гранулами и перихроматированными фибриллами существует структурная связь. При больших увеличениях внутри гранул можно видеть тонкие извитые фибриллы 3-5 нм толщиной.

Крупные гранулы типа перихроматиновых встречаются в специфических активных в отношении синтеза РНК участках политенных хромосом, в пуффах (см. ниже). Сходные гранулы обнаружены в боковых петлях функционирующих мейотических хромосом. Исходя из этого, некоторые исследователи делают предположение, что такие рибонуклеопротеидные гранулы могут представлять собой зрелые комплексы из нескольких информофер, рибонуклеопротеидные частицы, содержащие информационную РНК. Однако это предположение нуждается в проверке.

Интерхроматиновые гранулы - третий тип РНК-содержащих структур. Они имеют размер 20-25 нм и группируются всегда в форме скоплений между участками хроматина. Эти гранулы не стандартны по величине и переплетены тонкими фибриллами.

В последнее время были получены антитела к мяРНП. Оказалось, что среди них есть и различные сплайсосомы, гранулы размером 20-30 нм. Эти мяРНП располагались в зонах свободных от конденсированного хроматина и по своей локализации совпадали с зонами, где располагались скопления интерхроматиновых гранул. Они могут представлять собой скопление сплайсосом, участвующих в конечных стадиях созревания гяРНК.

В таком случае всю картину динамики синтеза гяРНК можно представить себе следующим образом. Деконденсирующиеся участки хроматина (эухроматин) по периферии конденсированных зон хроматина, связываясь с РНК-полимеразой II, транскрибируют гяРНК в виде начальных перихроматированных фибрилл, связывающихся с белками информофер, которые затем подвергаясь созреванию с участием сплайсосом (интерхроматиновые гранулы), дают начало зрелым формам иРНК - комплексам информофер, или перихроматиновым гранулам. Вероятно, не все зрелые иРНК могут переходить в крупные (45-60 нм) перихроматиновые гранулы, а последние, вероятно, характерны для РНК с высоким молекулярным весом.

Иную топографию в интерфазных ядрах имеют РНП-продукты растительных клеток. Так, в ядрах с хромонемной организацией интерфазного хроматина, РНП в виде крупных гранул (20-30 нм) и тонких фибрилл (6-8 нм) располагается по периферии такого конденсированного хроматина и в межхроматиновых зонах; создается впечатление, что вся периферия хромонемных участков хроматина вовлечена в синтез РНК (рис. 100б).

Были сделаны попытки изучить морфологию транскрипции нерибосомных генов на тотальных плоскостных препаратах. Для этого из гомогенатов ядер осаждали фракцию диффузного хроматина, обогащенного включенными мечеными предшественниками РНК. Активный хроматин на таких препаратах имел вид типичных нуклеосомных фибрилл с редко сидящими одиночными гранулами РНК-полимеразы, от которых отходили транскрипты РНК разной длины и конфигурации (рис. 101). Обычно это были изогнутые фибриллы, иногда имеющие на свободном конце глобулярные образования. Чаще всего расстояние между одиночными гранулами РНК-полимеразы доходило до 0,1-0,3 мкм, так что представлялось, что с гена транскрибируется лишь одна копия, в отличие от множественных копий, получаемых с генов рРНК. Но однако, в редких случаях обнаруживались участки хроматина с тесно расположенными РНК-полимеразами, от которых отходили в сторону транскрипты разной длины, образуя “елочко”-подобные структуры.

Попытки наблюдать морфологию транскрипции на определенных генах были сделаны на целом ряде объектов, включая политенные хромосомы двукрылых насекомых и мейотические профазные хромосомы.

Синтез РНК в пуфах политенных хромосом

Более полные представления о морфологии синтеза и образования конечных продуктов транскрипции определенных генных участков интерфазных хромосом были получены при изучении политенных хромосом.

Светооптическое изучение строения политенных хромосом двукрылых обнаружило, что кроме дисков и междисковых участков встречаются локальные расширения хромосом, т.н. пуфы. В этих участках ДНК не располагается в виде дисков, они имеют аморфную структуру, часто содержат РНК, базофильны. В пуфах происходит основное включение 3Н-уридина, что однозначно показывает, что они являются активными участками этих своеобразных интерфазных хромосом.

Количество пуфов и их локализация не являются постоянной характеристикой той или иной политенной хромосомы. Более того, рисунок пуфирования (т.е. расположение пуфов на хромосомах) разный на одной и той же хромосоме в зависимости от стадии развития личинки, или от типа клеток, взятых для исследования.

Так как возникновение пуфов прямо связывается с активацией синтеза РНК, то было показано, что развитие определенного пуфа отражает собой активацию отдельного или группы генов, детерминирующих функционально-метаболические особенности клеток на данном этапе развития. Поэтому в различных дифференцированных клетках картина пуффинирования не должна совпадать, что и наблюдается на самом деле (рис. 102).

При затухании синтеза РНК пуф начинает спадаться, уменьшаться в размерах, терять базофилию и в конце концов на его месте можно видеть диск, из которого он развился. Особенно демонстративно это видно на особо крупных пуфах 4-ой хромосомы Chironomus, которые носят название колец Бальбиани (КБ). Так на личиночной стадии можно видеть на 4-ой хромосоме вблизи от ядрышка два постоянных базофильных пуфа, КБ1 и КБ2.

В электронном микроскопе было обнаружено, что зона этих крупных пуфов содержит большое количество гранул рибонуклеопротеидной природы, размером 50-60 нм. Эти гранулы, предположительно содержащие информационную РНК и соответствующие информосомам в составе кольца Бальбиани 2 (КБ2), располагаются особым образом. На ультратонких срезах можно наблюдать, что они располагаются рядами вдоль осевых элементов. Каждая гранула оказалась связанной с осевой структурой с помощью ножки-фибриллы толщиной 14-16 нм (рис. 103). Эта картина соответствует предположению, что 50-60 нм гранулы представляют собой РНП-продукты данного хромосомного локуса, находящиеся в процессе их синтеза. На плоскостных препаратах по Миллеру такие участки КБ2 были представлены многочисленными “елочко”-подобными структурами, состоящими из осевых компонентов и отходящих от них многочисленных гигантских траснкриптов, имеющих длину до 7,7 мкм. От участка транскрипции в данном случае отходит в среднем 123 гигантских транскрипта, связанных с комплексами РНК-полимеразы.

Расшифровка этих морфологических наблюдений стала возможной при анализе индивидуальных РНК, выделенных из КБ2. Для этого с помощью микроманипулятора выделяли ядра, затем отделяли от других 4-ую хромосому, и с помощью микродиссекции вырезали и накапливали зоны, содержащие КБ2. Затем из этих пуфов выделялась РНК, которая исследовалась с помощью гель-электрофореза. Выделенная РНК оказалась огромных размеров, она имела мол. вес 15-35 х 106 Д, и коэффициент седиментации 75S. Соответственно гены этой 75S РНК содержат 37 т.п.н., вероятно не имеют интронов, т.к. 75S РНК не подвергается процессингу и служит матрицей для синтеза гигантских молекул секреторных белков. Гены 75S РНК оказались построены наподобие сателлитных ДНК: в их составе наблюдается иерархия внутренних повторов.

После завершения синтеза 75S РНК, ее молекулы в виде крупных (50-60 нм) РНП-гранул транспортируются в цитоплазму. Однако значительная их часть разрушается: только 4-7% этой РНК обнаруживается в цитоплазме. Эти гигантские молекулы РНК образуют в цитоплазме особо крупные полисомы (700S), в состав которых входит 55-65 рибосом, на которых синтезируются длинные цепочки гликопротеидов клеток слюнной железы мотыля. (На самом деле эта железа не участвует в пищеварении, она не содержит ферментов; ее ф

– Конец работы –

Эта тема принадлежит разделу:

ЧАСТЬ I. Введение. Предмет клеточной биологии ГЛАВА 1. Клеточная теория

Предисловие... ЧАСТЬ I Введение Предмет клеточной биологии... ГЛАВА Клеточная теория Клетка элементарная единица живого...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Чем определяется число ядрышек в клетке

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая организация митотических хромосом
ЧАСТЬ III. Ядерные транскрипты и их транспорт ГЛАВА 8. Ядрышко – источник рибосом Строение рибосом Чем определяется число ядрышек в клетке Множеств

Другие специальные методы электронной микроскопии биологических объектов
В последнее время начинают применять методы высоковольтной (вернее, сверхвысоковольтной) микроскопии. Сконструированы приборы с ускоряющим напряжением 1-3 млн. вол

ДНК хроматина
В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие эк

Репликация эукариотических ДНК
Бактериальная хромосома реплицируется как одна структурная единица, имеющая одну стартовую точку репликации и одну точку терминации. Таким образом бактериальная циклическая ДНК является одним

Петлевые домены ДНК – третий уровень структурной организации хроматина
Расшифровка принципа строения элементарных хромосомных компонентов – нуклеосом и 30 нм фибрилл – еще мало что дает для понимания основ трехмерной организации хромосом, как в интерфазе, так и в мито

Часть III
Ядерные транскрипты и их транспорт Одна из важнейших функций клеточного ядра является реализация генетической информации в виде синтеза целого ряда РНК или служащих

Строение рибосом
Рибосома представляет собой элементарную клеточную машину синтеза любых белков клетки. Все они построены в клетке одинаково, имеют одинаковую молекулярную композицию, выполняют одинаковую функцию –

Сферосомы
Это мембранные пузырьки, встречающиеся в клетках растений, они окрашиваются липофильными красителями, имеют высокий коэффициент преломления и поэтому хорошо видны в световой микроскоп. Сферосомы об

Общая морфология
Митохондрии или хондриосомы (от греч. mitos– нить, chondrion- зернышко, soma- тельце) представляют собой гранулярные или нитевидные органеллы, присутствующие в цитоплазме простейших, растений и жив

Функции митохондрий
Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ. В клетках процессы окисления и выделения энергии, освобождающиеся

Окислительное фосфорилирование у бактерий
У прокариотических клеток, способных к окислительному фосфорилированию, элементы цикла трикарбоновых кислот локализованы прямо в цитоплазме, а ферменты дыхательной цепи и фосфорилирования связаны с

Увеличение числа митохондрий
Так же, как и другие органеллы цитоплазмы, митохондрии могут увеличиваться в числе, что особенно заметно при делении клеток или при увеличении функциональной нагрузки клетки, более того, происходит

Авторепродукция митохондрий
Исследования последних лет привели к удивительным открытиям: двумембранные органеллы обладают полной системой авторепродукции. Эта система полная в том смысле, что в митохондриях и пластидах открыт

Хондриом
Хондриом – это совокупность всех митохондрий в одной клетке. Оказалось, что такая совокупность может быть различной в зависимости от типа клеток. Так, во многих клетках хондриом представлен разрозн

Общие свойства микрофиламентов.
  Микрофиламенты встречаются во всех клетках эукариот. Особенно они обильны в мышечных волокнах и клетках – высокоспециализированных клетках, выполняющих функции сокращения мышц. Микр

Акто-миозиновые комплексы немышечных клеток
Акто-миозиновые комплексы участвуют в движении ламеллоплазмы. Так молекулы миозина I были выявлены на ведущем краю движущихся амебных форм диктиостелиума, в то время как миозин II типа обнаруживалс

Центросомный цикл
Было обнаружено, что строение и активность центросом меняются в зависимости от периода клеточного цикла, в течение которого клеточный центр претерпевает тоже циклические изменения (рис. 283).

Базальные тельца. Строение и движение ресничек и жгутиков.
Как уже указывалось, у многих клеток животных, вышедших из клеточного цикла, в G0-стадии центриоли принимают участие в образовании аппарата движения – ресничек. Их две группы: кинетоц

Часть VII. Механизмы клеточного деления.
Глава 24. Митотическое деление клеток. Общая организация митоза Как постулирует клеточная теория, увеличение числа клеток происходит исключительно

Фактор стимуляции митоза
Расшифровка регуляции процессов клеточного деления началась в 70е годы прошлого века, когда были найдены методы слияния разных клеток, методы получения гетерокарионов (о них см. главу 2). Оказалось

Циклины
Циклин был обнаружен при изучении включения меченых аминокислот в синхронно дробящиеся яйца морского ежа. Было обнаружено, что в одном из белковых пиков на электрофореграммах метка периодически то

Регуляция клеточного цикла у млекопитающих
На предыдущей схеме рассмотрены только конечные звенья цепи событий, заканчивающихся делением клетки. Однако, как уже говорилось, деление клетки обязательно связано с репликацией ДНК. Следовательно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги