Лекция № 1 ВОЗБУЖДЕНИЕ КАК БИОЛОГИЧЕСКАЯ РЕАКЦИЯ

Лекция № 1

ВОЗБУЖДЕНИЕ КАК БИОЛОГИЧЕСКАЯ РЕАКЦИЯ.

МЕМБРАННО-ИОННАЯ ТЕОРИЯ ВОЗБУЖДЕНИЯ

 

План:

1. Понятие о физиологическом покое и деятельности.

2. Виды раздражителей.

3. Понятие о возбудимых тканях и их свойства.

4. Процесс возбуждения. Характеристика потенциала покоя и потенциала действия. Мембранно-ионная теория.


І. Любая живая ткань может находиться как в состоянии покоя, так и в деятельном состоянии. Но даже, если ткань находится в состоянии покоя, для неё характерен оптимальный для данного состояния уровень обменных процессов, т.е. покой не абсолютный, а относительный – физиологический. В деятельном состоянии ткани отмечается увеличение обменных, тепловых процессов, кроме того, возникают качественно новые реакции, прежде всего – электрические.

Что же приводит ткань в деятельное состояние?

РАЗДРАЖИТЕЛЬ

1) достаточно велико – имеет пороговое значение (по силе можно выделить допороговое и сверх- или надпорогвые раздражители); 2) возникло достаточно быстро (крутизна нарастания во времени, или прирост… 3) продолжается достаточно долго (время воздействия – хронаксия).

История развития вопроса.

Умозрительные предположения об электрической природе нервного возбуждения высказывалась учеными уже в XVIII веке, когда Адансонотметил сходство действия ударов электрических рыб и разрядов лейденской банки на животных и человека.

Интерес к животному электричеству возрастает в связи с надеждами на его лечебное действие.

Началом экспериментального изучения истинного «животного электричества» следует считать 1771 г., когда итальянский врач Луиджи Гальвани опубликовал «Трактат о силах электричества при мышечном движении». Он обратил внимание на то, что отпрепарированные лапки лягушки приходили в движение, как только соприкасались с железной решеткой балкона, к которому были подвешены за медный крючок. Гальвани считал, что он открыл «животное электричество», находящееся в мышцах. Это вызвало резкую критику физика Александра Вольта, который утверждал, что электричество в данном случае возникает в результате контакта через влажную среду двух разнородных металлов. Результатом споров было: 1) открытие источника постоянного тока – вольтов столб – гальванический элемент; 2) Гальвани же видоизменил опыт – отпрепарировал седалищный нерв и набрасывал его на разрез мышцы голени, в результате чего мышца сокращалась – экспериментально доказал наличие «животного электричества».

В настоящее время убедительно доказано, что клетки любой возбудимой ткани имеют мембранный потенциал (разность потенциалов между наружной поверхностью мембраны и цитоплазмы), а формирование его объясняется положениями мембранно-ионной теории возбуждения.

В 1896 г. В.Ю. Чаговец (студент-химик) высказал мысль об ионной природе электрических процессов в живых тканях. В 1902 г. Ю. Берштейном была предложена мембранно-ионная теория возбуждения, которую модифицировали и экспериментально обосновали Ходжкин, Хаксли и Катц (1949-1952).

Согласно указанной теории, наличие электрических потенциалов в живых клетках обусловлено неравенством концентраций ионов Na+, K+, Ca2+ и Cl- внутри и вне клетки. И различной проницаемостью для них поверхностной мембраны, а именно:

1. Клеточная мембрана обладает селективной (избирательной) проницаемостью для ионов: в состоянии покоя для ионов К+ в 25 раз больше, чем для Na+, а в состоянии возбуждения – натриевая проницаемость в 20 раз больше калиевой.

2. Концентрация ионов Na+, K+ и Cl- различна внутри и вне клетки:

3. Движение ионов через воротную ситему мембраны осуществляется двумя механизмами: свободной диффузией по градиенту концентрации (пассивный транспорт) и транспортной системой − Na+,K+-насосом – молекулярным механизмом, локализованным в мембране, которая представляет собой белковую молекулу, спососбную транспортировать вещества, используя энергию распада АТФ под действием АТФазы. В состоянии покоя Na+,K+-насос переносит 3 иона Na+ на наружную поверхность мембраны против градиента концентрации, а в обратном направлении во внутрь клетки 2 иона К+ также против градиента концентрации. Таким образом, данный механизм имеет значение:

а) создает и поддерживает трансмембранный градиент концентрации для ионов Na+ и К+ в состоянии покоя и в состоянии возбуждения;

б) формирует разность потенциалов, суммирующуюся с потенциалом покоя или потенциалом действия. Это происходит потому, что насос электрогенен: на 3 иона Na+, вынесенного из клетки, вносится 2 иона К+, т.е.

Указанные процессы приводят к формированию электрического состояния ткани как в покое, так и в возбуждении.


ПОТЕНЦИАЛ ПОКОЯ И ЕГО ПРИРОДА.

Природа ПП. В состоянии физиологического покоя мембрана больше проницаема (в 25 раз) для ионов К+, чем для ионов Na+ и Cl-. Следовательно, К+… Однако мембрана проницаема и для ионов Na+ и Cl-, хотя очень незначительно. Это снижает величину ПП до −80…

Соответствие фаз потенциала действия электрическим состояниям мембраны

Реполяризация – натриваевая инактивация приводит к снижению потока Na внутрь клетки, калиевая проницаемость растет, полярность клетки стремится к… Реполяризация происходит волнообразно, что отражается через формирование… Гиперполяризация – количественно выражается следовым положительным потенциалом – до -100 мВ – СПП (отрезок FK).