рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Результат работы программы

Результат работы программы - раздел Геология, Классификация сейсмических сигналов на основе нейросетевых технологий Результат Работы Программы. Для Исследований Возможностей Разработанно...

Результат работы программы.

Для исследований возможностей разработанного программного обеспечения были проведены различные эксперименты, основная цель которых - подобрать значения параметров настройки программы, при которых итоговые результаты ее работы содержали наименьшее количество ошибок идентификации. Методика, по которой оценивалась ошибка классификации, основана на подходе cross-validation. Эксперименты проводились на данных, полученных из сейсмограмм, записанных в Норвежской сейсмологической сети. В исходной выборке насчитывалось 86 событий из разных классов, из них соответственно 50 - землетрясений и 36 - взрывов. Исследования проводились для разного числа признаков идентификации, а именно для 18 и 9 размерных векторов признаков.

Первая серия экспериментов была проведена на 18 размерных векторах. Структура нейронной сети соответствовала 18,9,1 , где 18 - количество нейронов во входном слое, 9- число нейронов на первом скрытом слое, 1-размерность выхода сети. Увеличение нейронов на скрытом слое не приводило к улучшению результатов, а при уменьшении возникали дополнительные ошибки, в следствии чего такая структура предлагается в качестве оптимальной.

Далее представлены описание параметров настройки программы во входных файлах и результаты тестирования. В качестве начальной конфигурации использовались следующие значения настраиваемых параметров в файле nvclass. inp TYPE 2 2 NDATA 18 NPATTERN 86 PatternFile norv18. pat NetStructure 18,9,1 WidrowInit No Shuffle Yes Scaling Yes Eta 0.7 MaxLearnCycles 1950 Loop 5 Результаты экспериментов отражают количество ошибок идентификации от различных параметров настройки программы.

Для примера рассмотрим влияние процедуры начальной инициализации весовых коэффициентов и точности обучения на ошибку классификации. На рисунках 7.1 и 7.2 едставлены эти результаты.

Отметим, что более стабильные результаты получаются в случае инициализации весов при помощи нормально распределенных величин. Можно добиться всего лишь 4-5 ошибок из 86, что соответствует ошибке идентификации равной 5-6 процентов. Для 9 размерных векторов признаков была использована следующая структура нейронной сети 9,5,1 , т.е. 5 нейронов на скрытом слое было достаточно для получения хороших результатов. В качестве примера приведем исследования аналогичные тем, которые описаны выше. Рис. 7.3,7.4 . Последнюю диаграмму можно представить в виде. Уже сейчас можно сделать вывод, что при использовании не всего набора признаков идентификации, а некоторой части признаков результаты заметно улучшаются.

Причем для случая 9 -размерных признаков особую роль процедура начальной инициализации не играет. Представленные эксперименты не отражают полной картины о возможностях применения нейронных сетей для идентификации типа сейсмического события, но они экспериментально подтверждают эффективность нейросетевых технологий для решения этой задачи. 8. Заключение Проведенные исследования подтвердили эффективность применения нейросетевых технологий для идентификации типа источника сейсмических события.

При определенных настройках нейронной сети можно добиться результатов, когда вероятность правильного распознавания составляет 96.5 . Ошибки возникают только на 3 векторах из 86. Если сравнивать полученные результаты с теми, которые можно достичь при использовании стандартных методов классификации, один из вариантов которых приведен в разделе 4, то они практически повторяют друг друга.

И статистика и нейронные сети ошибаются одинаковое количество раз, причем на одних и тех же векторах. Из 86 событий статистические методы ошибаются на 3 векторах 1-землетрясение и 2-взрыва, и нейросетевой классификатор также ошибается именно на этих векторах. Соответственно пока нельзя говорить о каком-то превосходстве одного метода над другим. Заметим, что в настоящих исследованиях были использованы довольно общие и универсальные технологии нейроинформатики многослойные сети применяются для решения многих задач, но это не всегда самая оптимальная нейроструктура, а применение более узких и специализированных нейронных парадигм в некоторых случаях позволяет получать лучшие результаты.

В частности, при помощи нейропакетов на тех же данных были поставлены ряд экспериментов над сетями Кохонена, описанными в разделе 5.4. Результаты показали, что количество ошибок идентификации в большинстве случаев составляет 3-4 вектора, т.е. практически совпадают с результатами, полученными на многослойных сетях и классических методах.

Итак, подводя итог всему выше сказанному, выделим основные результаты проведенных исследований 1. Нейронные сети позволяют успешно решать проблему определения типа источника сейсмического события. 2. Новое решение не уступает по эффективности традиционным методам, использующимся в настоящее время для решения исследуемой задачи. 3. Возможны улучшения технических характеристик нейросетевого решения.

В качестве дальнейших исследований, направленных на повышение эффективности нейросетевого решения, можно предложить следующие Для многослойных сетей прямого распространения решить проблему начальной инициализации весовых коэффициентов. Если предположить, что существует неявная зависимость между матрицей начальных весовых коэффициентов и конкретной реализацией выборки данных, предназначенной для обучения нейронной сети, то можно объяснить те случаи, когда результат несколько хуже, чем в большинстве экспериментов.

Возможно, реализация алгоритма учитывающего распределение исходных данных позволит получать более стабильные результаты. Для этих же сетей можно использовать другие методы обучения, позволяющих с большей вероятностью находить глобальный минимум функции ошибки. Исследование других парадигм и разработка специальной модели, предназначенной конкретно для решения данной задачи могут привести к улучшению полученных результатов. Список литературы. 1. Уоссермен Ф. Нейрокомпьютерная техника - М. Мир, 1992. 2. Горбань А. Н Дубинин-БарковскийВ. Л Кирдин А. Н. Нейроинформатика СП Наука РАН 1998. 3. Горбань А. Н Россиев Д. А. Нейронные сети на персональном компьютере СП Наука РАН 1996. 4. Ежов А. А Шумский С. А. Нейрокомпьютинг и его применение в экономике и бизнесе . 1998. 5. Bishop C. M. Neural Networks and Pattern Recognition.

Oxford Press. 1995. 6. Goldberg D. Genetic Algorithms in Machine Learning, Optimization, and Search Addison-Wesley, 1988. 7. Fausett L. V. Fundamentals of Neural Networks Architectures, Algorithms and Applications , Prentice Hall, 1994. 8. Kohonen T. Self-organization and Associative Memory , Berlin Springer- Verlag, 1989. 9. Kushnir A. F Haikin L. M Troitsky E. V. Physics of the earth and planetary interiors 1998. 10. Копосов А. И Щербаков И. Б Кисленко Н. А Кисленко О. П Варивода Ю. В. Отчет по научно-исследовательской работе Создание аналитического обзора информационных источников по применению нейронных сетей для задач газовой технологии и др ВНИИГАЗ, 1995, www. neuralbench. ru 11. Fukunaga K Kessel D. L Estimation of classification error , IEEE Trans. Comp. C 20,136-143.1971. 12. Деев А. Д Применение статистического дискриминационного анализа и его ассимптотического расширения для сравнения различных размерностей пространства РАН 195,759-762.1970. Приложение. 1.

– Конец работы –

Эта тема принадлежит разделу:

Классификация сейсмических сигналов на основе нейросетевых технологий

Существуют задачи, решение которых просто невозможно аналитическими методами, а нейросети успешно с ними справляются. Даже в том случае, если можно… В данном дипломе рассматривается задача, возникающая при сейсмическом… Несмотря на то, что для ее решения, в настоящее время успешно применяются методы статистического анализа, …

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Результат работы программы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные положения теории нейронных сетей
Основные положения теории нейронных сетей. Для того, чтобы обсуждать возможности нейросетевых технологий, необходимо хотя бы немного иметь представление об элементарных понятиях, о том, что же тако

Постановка задачи классификации сейсмических сигналов
Постановка задачи классификации сейсмических сигналов. Международная система мониторинга МСМ , сформировавшаяся в мире за последние десятилетия, предназначена для наблюдения за сейсмически активным

Выделение информационных признаков из сейсмограмм
Выделение информационных признаков из сейсмограмм. Исходные данные представлены в виде сейсмограмм рис. 3.1 - это временное отображение колебаний земной поверхности. В таком виде анализирова

Отбор наиболее информативных признаков для идентификации
Отбор наиболее информативных признаков для идентификации. Как было показано выше, в сейсмограмме анализируемого события можно выделить достаточно много различных характеристик, однако, далеко не вс

Оценка вероятности ошибочной классификации методом скользящего экзамена
Оценка вероятности ошибочной классификации методом скользящего экзамена. Оценивание вероятности ошибочной идентификации типа событий землетрясение-взрыв, в каждом конкретном регионе представляет со

Нейрон-классификатор
Нейрон-классификатор. получал на свои входы уже линейно-разделимые множества. Такие структуры носят название многослойные персептроны 1-4,7,10 рис. 1.3 . Легко показать, что, в принципе, все

Методы предварительной обработки данных
Методы предварительной обработки данных. Если возникает необходимость использовать нейросетевые методы для решения конкретных задач, то первое с чем приходится сталкиваться - это подготовка данных.

Максимизация энтропии как цель предобработки
Максимизация энтропии как цель предобработки. Рассмотрим основной руководящий принцип, общий для всех этапов предобработки данных. Допустим, что в исходные данные представлены в числовой фор

Реализация нейросетевой модели и исследование ее технических характеристик
Реализация нейросетевой модели и исследование ее технических характеристик. Ранее было показано, какими средствами нейроинформатики можно пытаться решить задачу идентификации типа сейсмического ист

Выбор начальных весовых коэффициентов
Выбор начальных весовых коэффициентов. Перед тем, как приступить к обучению нейронной сети, необходимо задать ее начальное состояние. От того насколько удачно будут выбраны начальные значения весов

Алгоритм обучения и методы его оптимизации
Алгоритм обучения и методы его оптимизации. Приступая к обучению выбранной нейросетевой модели, необходимо было решить, какой из известных типов алгоритмов, градиентный обратное распространения оши

Формирование обучающей выборки и оценка эффективности обученной нейросетевой модели
Формирование обучающей выборки и оценка эффективности обученной нейросетевой модели. Из исходных данных необходимо сформировать как минимум две выборки - обучающую и проверочную. Обучающая в

Функциональные возможности программы
Функциональные возможности программы. В программе nvclass. с - нейро-классификатор векторов данных реализована модель двухслойного персептрона, представленная в разделе 6. Эта программа пред

Общие сведения
Общие сведения. Программный пакет предназначенный для идентификации типа сейсмического события включает следующие модули Исходный код программы nvclass. c и nvclass. h Файл с настройками режима раб

Описание входного файла с исходными данными
Описание входного файла с исходными данными. В качестве исходных данных используется отформатированный текстовый файл, в котором хранится информация о размерности векторов, их количестве и с

Описание файла настроек
Описание файла настроек. Параметры настройки программы содержаться во входном файле nvclass. inp. Пример файла приведен в приложении 3. Для настройки используются следующие переменные TYPE -

Эксплуатация программного продукта
Эксплуатация программного продукта. Перед тем, как приступить к эксплуатации программного продукта рекомендуется ознакомиться с форматом данных, в котором должны быть записаны исходная выбор

Пример файла с векторами признаков
Пример файла с векторами признаков. Представлена выборка из файла 9 Norv. txt, содержащего 9 размерные вектора признаков. NumOfPattern 86 PatternDimens 9 1 -14.3104 -13.2561 -13.4705 -13.430

Файл с настройками программы
Файл с настройками программы. Common parameters for programm NVCLASS 1 1 - OnlyTest mode, 1 2 - TestAfterLearn mode, 2 1 - CheckOneVector, 2 2 - CrossValidation mode. TYPE 2 2 NDATA 9 NPATTERN 86 P

Пример файла отчета
Пример файла отчета. NVCLASS report - Wed Jun 02 15 58 02 1999 Type 1 2 Neural Net - 18,12,1 PatternFile - vect. txt Test Vector s - vector. tst ResNetFname - 12. net LearnTolerance 0.10 Ini

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги