рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Максимизация энтропии как цель предобработки

Максимизация энтропии как цель предобработки - раздел Геология, Классификация сейсмических сигналов на основе нейросетевых технологий Максимизация Энтропии Как Цель Предобработки. Рассмотрим Основной Руководящий...

Максимизация энтропии как цель предобработки. Рассмотрим основной руководящий принцип, общий для всех этапов предобработки данных.

Допустим, что в исходные данные представлены в числовой форме и после соответствующей нормировки все входные и выходные переменные отображаются в единичном кубе. Задача нейросетевого моделирования - найти статистически достоверные зависимости между входными и выходными переменными. Единственным источником информации для статистического моделирования являются примеры из обучающей выборки. Чем больше бит информации принесет пример - тем лучше используются имеющиеся в нашем распоряжении данные.

Рассмотрим произвольную компоненту нормированных предобработанных данных. Среднее количество информации, приносимой каждым примером, равно энтропии распределения значений этой компоненты. Если эти значения сосредоточены в относительно небольшой области единичного интервала, информационное содержание такой компоненты мало. В пределе нулевой энтропии, когда все значения переменной совпадают, эта переменная не несет никакой информации. Напротив, если значения переменной равномерно распределены в единичном интервале, информация такой переменной максимальна.

Общий принцип предобработки данных для обучения, таким образом состоит в максимизации энтропии входов и выходов. 5.2 Нормировка данных Как входами, так и выходами могут быть совершенно разнородные величины. Очевидно, что результаты нейросетевого моделирования не должны зависеть от единиц измерения этих величин. А именно, чтобы сеть трактовала их значения единообразно, все входные и выходные величин должны быть приведены к единому масштабу.

Кроме того, для повышения скорости и качества обучения полезно провести дополнительную предобработку, выравнивающую распределения значений еще до этапа обучения. Индивидуальная нормировка данных Приведение к единому масштабу обеспечивается нормировкой каждой переменной на диапазон разброса ее значений. В простейшем варианте это - линейное преобразование в единичный отрезок. Обобщение для отображения данных в интервал, рекомендуемого для входных данных тривиально. Линейная нормировка оптимальна, когда значения переменной плотно заполняют определенный интервал.

Но подобный прямолинейный подход применим далеко не всегда. Так, если в данных имеются относительно редкие выбросы, намного превышающие типичный разброс, именно эти выбросы определят согласно предыдущей формуле масштаб нормировки. Это приведет к тому, что основная масса значений нормированной переменной сосредоточится вблизи нуля Гораздо надежнее, поэтому, ориентироваться при нормировке не а экстремальные значения, а на типичные, т.е. статистические характеристики данных, такие как среднее и дисперсия где , В этом случае основная масса данных будет иметь единичный масштаб, т.е. типичные значения все переменных будут сравнимы рис. 6.1 Однако, теперь нормированные величины не принадлежат гарантированно единичному интервалу, более того, максимальный разброс значений заранее не известен. Для входных данных это может быть и не важно, но выходные переменные будут использоваться в качестве эталонов для выходных нейронов.

В случае, если выходные нейроны - сигмоидные, они могут принимать значения лишь в единичном диапазоне.

Чтобы установить соответствие между обучающей выборкой и нейросетью в этом случае необходимо ограничить диапазон изменения переменных. Линейное преобразование, представленное выше, не способно отнормировать основную массу данных и одновременно ограничить диапазон возможных значений этих данных. Естественный выход из этой ситуации - использовать для предобработки данных функцию активации тех же нейронов.

Например, нелинейное преобразование, нормирует основную массу данных одновременно гарантируя что рис. 5.2 Как видно из приведенного выше рисунка, распределение значений после такого нелинейного преобразования гораздо ближе к равномерному. Все выше перечисленные методы нормировки направлены на то, чтобы максимизировать энтропию каждого входа выхода по отдельности. Но, вообще говоря, можно добиться гораздо большего, максимизируя их совместную энтропию.

Существуют методы, позволяющие проводить нормировку для всей совокупности входов, описание некоторых из них приведено в 4 . 5.3 Понижение размерности входов Поскольку заранее неизвестно насколько полезны те или иные входные переменные для предсказания значений выходов, возникает соблазн увеличивать число входных параметров, в надежде на то, что сеть сама определит, какие из них наиболее значимы. Однако чаще всего это не приводит к ожидаемым результатам, а к тому же еще и увеличивает сложность обучения.

Напротив, сжатие данных, уменьшение степени их избыточности, использующее существующие в них закономерности, может существенно облегчить последующую работу, выделяя действительно независимые признаки. Можно выделить два типа алгоритмов, предназначенных для понижения размерности данных с минимальной потерей информации Отбор наиболее информативных признаков и использование их в процессе обучения нейронной сети Кодирование исходных данных меньшим числом переменных, но при этом содержащих по возможности всю информацию, заложенную в исходных данных.

Рассмотрим более подробно оба типа алгоритмов. 5.3.1 Отбор наиболее информативных признаков Для того, чтобы понять какие из входных переменных несут максимум информации, а какими можно пренебречь необходимо либо сравнить все признаки между собой и определить степень информативности каждого из них, либо пытаться найти определенные комбинации признаков, которые наиболее полно отражают основные характеристики исходных данных.

В разделе 3.2 был описан алгоритм, позволяющий упорядочить все признаки по мере убывания их значимости. Однако накладываемые ограничения не позволяют применять его для более распространенных задач. Для выбора подходящей комбинации входных переменных используется так называемые генетические алгоритмы 5 , которые хорошо приспособлены для задач такого типа, поскольку позволяют производить поиск среди большого числа комбинаций при наличии внутренних зависимостей в переменных. 5.3.2 Сжатие информации.

Анализ главных компонент Самый распространенный метод понижения размерности - это анализ главных компонент АГК . Традиционная реализация этого метода представлена в теории линейной алгебры. Основная идея заключается в следующем к данным применяется линейное преобразование, при котором направлениям новых координатных осей соответствуют направления наибольшего разброса исходных данных. Для этих целей определяются попарно ортогональные направления максимальной вариации исходных данных, после чего данные проектируются на пространство меньшей размерности, порожденное компонентами с наибольшей вариацией 4 . Один из недостатков классического метода главных компонент состоит в том, что это чисто линейный метод, и соответственно он может не учитывать некоторые важные характеристики структуры данных.

В теории нейронных сетей разработаны более мощные алгоритмы, осуществляющие нелинейный анализ главных компонент 3 . Они представляют собой самостоятельную нейросетевую структуру, которую обучают выдавать в качестве выходов свои собственные входные данные, но при этом в ее промежуточном слое содержится меньше нейронов, чем во входном и выходном слоях. рис 5.3 . Сети подобного рода носят название - автоассоциативные сети. Чтобы восстановить свои входные данные, сеть должна научиться представлять их в более низкой размерности.

Базовый алгоритм обучения в этом случае носит название правило обучения Ойя для однослойной сети. Учитывая то, что в такой структуре веса с одинаковыми индексами в обоих слоях одинаковы, дельта-правило обучения верхнего а тем самым и нижнего слоя можно записать в виде, где, и j 1,2 d - компонента входного вектора, выходы сети j 1 d d - количество нейронов на входном ми выходном слоях размерность вектора признаков y i - выход с i -го нейрона внутреннего слоя, i 1 M M - количество нейронов на внутреннем слое - коэффициент обучения w ij w kj - веса сети, соответственно между входным - скрытым и скрытым - выходным слоями. Скрытый слой такой сети осуществляет оптимальное кодирование входных данных, и содержит максимально возможное при данных ограничениях количество информации.

После обучения внешний интерфейс w ij рис. 5.4 может быть сохранен и использован для понижения размерности.

Нелинейный анализ главных компонентов Главное преимущество нейроалгоритмов в том, что они легко обобщаются на случай нелинейного сжатия информации, когда никаких явных решений уже не существует. Можно заменить линейные нейроны в описанных выше сетях - нелинейными.

С минимальными видоизменениями нейроалгоритмы будут работать и в этом случае, всегда находя оптимальное сжатие информации при наложенных ограничениях. Например, простая замена линейной функции активации нейронов на сигмоидную в правиле обучения Ойя приводит к новому качеству. Таким образом, нейроалгоритмы представляют собой удобный инструмент нелинейного анализа, позволяющий относительно легко находить способы глубокого сжатия информации и выделения нетривиальных признаков. 5.4 Выводы по разделу Конечно, описанными выше методиками не исчерпывается все разнообразие подходов к ключевой для нейроанализа проблеме формирования пространства признаков.

Например, существуют различные методики, расширяющие анализ главных компонент. Также, большего внимания заслуживают генетические алгоритмы. Необъятного не объять. Главное, чтобы за деталями не терялся основополагающий принцип предобработки данных снижение существующей избыточности всеми возможными способами.

Это повышает информативность примеров и, тем самым, качество нейропредсказаний. 6.

– Конец работы –

Эта тема принадлежит разделу:

Классификация сейсмических сигналов на основе нейросетевых технологий

Существуют задачи, решение которых просто невозможно аналитическими методами, а нейросети успешно с ними справляются. Даже в том случае, если можно… В данном дипломе рассматривается задача, возникающая при сейсмическом… Несмотря на то, что для ее решения, в настоящее время успешно применяются методы статистического анализа, …

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Максимизация энтропии как цель предобработки

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные положения теории нейронных сетей
Основные положения теории нейронных сетей. Для того, чтобы обсуждать возможности нейросетевых технологий, необходимо хотя бы немного иметь представление об элементарных понятиях, о том, что же тако

Постановка задачи классификации сейсмических сигналов
Постановка задачи классификации сейсмических сигналов. Международная система мониторинга МСМ , сформировавшаяся в мире за последние десятилетия, предназначена для наблюдения за сейсмически активным

Выделение информационных признаков из сейсмограмм
Выделение информационных признаков из сейсмограмм. Исходные данные представлены в виде сейсмограмм рис. 3.1 - это временное отображение колебаний земной поверхности. В таком виде анализирова

Отбор наиболее информативных признаков для идентификации
Отбор наиболее информативных признаков для идентификации. Как было показано выше, в сейсмограмме анализируемого события можно выделить достаточно много различных характеристик, однако, далеко не вс

Оценка вероятности ошибочной классификации методом скользящего экзамена
Оценка вероятности ошибочной классификации методом скользящего экзамена. Оценивание вероятности ошибочной идентификации типа событий землетрясение-взрыв, в каждом конкретном регионе представляет со

Нейрон-классификатор
Нейрон-классификатор. получал на свои входы уже линейно-разделимые множества. Такие структуры носят название многослойные персептроны 1-4,7,10 рис. 1.3 . Легко показать, что, в принципе, все

Методы предварительной обработки данных
Методы предварительной обработки данных. Если возникает необходимость использовать нейросетевые методы для решения конкретных задач, то первое с чем приходится сталкиваться - это подготовка данных.

Реализация нейросетевой модели и исследование ее технических характеристик
Реализация нейросетевой модели и исследование ее технических характеристик. Ранее было показано, какими средствами нейроинформатики можно пытаться решить задачу идентификации типа сейсмического ист

Выбор начальных весовых коэффициентов
Выбор начальных весовых коэффициентов. Перед тем, как приступить к обучению нейронной сети, необходимо задать ее начальное состояние. От того насколько удачно будут выбраны начальные значения весов

Алгоритм обучения и методы его оптимизации
Алгоритм обучения и методы его оптимизации. Приступая к обучению выбранной нейросетевой модели, необходимо было решить, какой из известных типов алгоритмов, градиентный обратное распространения оши

Формирование обучающей выборки и оценка эффективности обученной нейросетевой модели
Формирование обучающей выборки и оценка эффективности обученной нейросетевой модели. Из исходных данных необходимо сформировать как минимум две выборки - обучающую и проверочную. Обучающая в

Функциональные возможности программы
Функциональные возможности программы. В программе nvclass. с - нейро-классификатор векторов данных реализована модель двухслойного персептрона, представленная в разделе 6. Эта программа пред

Общие сведения
Общие сведения. Программный пакет предназначенный для идентификации типа сейсмического события включает следующие модули Исходный код программы nvclass. c и nvclass. h Файл с настройками режима раб

Описание входного файла с исходными данными
Описание входного файла с исходными данными. В качестве исходных данных используется отформатированный текстовый файл, в котором хранится информация о размерности векторов, их количестве и с

Описание файла настроек
Описание файла настроек. Параметры настройки программы содержаться во входном файле nvclass. inp. Пример файла приведен в приложении 3. Для настройки используются следующие переменные TYPE -

Эксплуатация программного продукта
Эксплуатация программного продукта. Перед тем, как приступить к эксплуатации программного продукта рекомендуется ознакомиться с форматом данных, в котором должны быть записаны исходная выбор

Результат работы программы
Результат работы программы. Для исследований возможностей разработанного программного обеспечения были проведены различные эксперименты, основная цель которых - подобрать значения параметров

Пример файла с векторами признаков
Пример файла с векторами признаков. Представлена выборка из файла 9 Norv. txt, содержащего 9 размерные вектора признаков. NumOfPattern 86 PatternDimens 9 1 -14.3104 -13.2561 -13.4705 -13.430

Файл с настройками программы
Файл с настройками программы. Common parameters for programm NVCLASS 1 1 - OnlyTest mode, 1 2 - TestAfterLearn mode, 2 1 - CheckOneVector, 2 2 - CrossValidation mode. TYPE 2 2 NDATA 9 NPATTERN 86 P

Пример файла отчета
Пример файла отчета. NVCLASS report - Wed Jun 02 15 58 02 1999 Type 1 2 Neural Net - 18,12,1 PatternFile - vect. txt Test Vector s - vector. tst ResNetFname - 12. net LearnTolerance 0.10 Ini

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги