рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Реализация нейросетевой модели и исследование ее технических характеристик

Реализация нейросетевой модели и исследование ее технических характеристик - раздел Геология, Классификация сейсмических сигналов на основе нейросетевых технологий Реализация Нейросетевой Модели И Исследование Ее Технических Характеристик. Р...

Реализация нейросетевой модели и исследование ее технических характеристик. Ранее было показано, какими средствами нейроинформатики можно пытаться решить задачу идентификации типа сейсмического источника, какие процедуры целесообразно применять при предварительной подготовке данных, был приведен небольшой обзор различных алгоритмов обучения известных нейроархитектур.

В этой главе представлено решение задачи на базе двухслойного персептрона, так как именно он был выбран на начальном этапе исследований. Дано также описание алгоритма обучения и методов его оптимизации. 6.1 Структура нейронной сети Итак, для решения задачи идентификации типа сейсмического события предлагается использовать одну из самых универсальных нейроархитектур - многослойный персептрон, а точнее его двухслойную реализацию рис. 6.1 . Как показали эксперименты, увеличение числа скрытых слоев не приводит к лучшим результатам, а лишь усложняет процесс обучения, поэтому и была выбрана именно реализация с одним скрытым слоем нейронов.

На вход сети подается p- мерный вектор признаков x i, i 1,2 p. Для определенности будем рассматривать случай, когда p 9 , хотя исследования проводились и для p 5, p 18. Оптимальное количество нейронов на скрытом слое H подбиралось экспериментально для разных p. Соответственно при p 9 достаточно брать H равным также 9 или немного больше.

Для разбиения исходных данных на два класса на выходе сети достаточно одного нейрона. Между входным и скрытым слоями, а также между скрытым и выходным слоями использовалась полносвязная структура. С учетом этих дополнений опишем принятые на рисунке 7.1 обозначения p - размерность исходных данных количество признаков используемых для классификации H - число нейронов на скрытом слое x i - компонента входного вектора признаков, i 1 p x 0 є 1 - постоянное воздействие используемое для работы нейронной сети w ji - весовые коэффициенты между входным и скрытым слоями, i 0,1 p, j 1 H v k - весовые коэффициенты между скрытым и выходным слоями, k 0,1 H. z j - значение выхода j-го нейрона скрытого слоя z 0 є 1, j 1 H y - значение выходного нейрона сети выход сети 12 f 1 x - функция активации нейронов скрытого слоя f 2 x - функция активации нейрона выходного слоя. В качестве функции активации f 1 x для нейронов скрытого слоя и f 2 x для единственного нейрона на выходе сети предлагается использовать одну и ту же функцию, а именно сигмоидную функцию активации, для краткости будем обозначать ее как f x, с производной в виде. Вид такой функции представлен на рис. 6.2 Т. к. значения функции f x ограничены в диапазоне 0,1 , результат сети y x может принимать любые действительные значения из этого же диапазона, в следствии чего логично интерпретировать выходы сети следующим образом если y x 0.5 , то вектор принадлежит к одному классу взрывы, в противном случае к другому землетрясения . 6.2 Исходные данные На вход нейронной сети предлагается подавать вектора признаков составленные из сейсмограмм.

О том, какие признаки были использованы для этой задачи и как они получены, было рассказано ранее в разделе 3.1. Стоит отметить, что проблема формирования векторов признаков - это исключительно проблема сейсмологии.

Поэтому для исследования эффективности применения нейронных сетей в качестве исходных данных были использованы уже готовые выборки векторов, которые содержали в себе примеры и землетрясений и взрывов.

Размерность векторов признаков p 9, хотя, как было отмечено в предыдущем разделе, проводились эксперименты и с другим количеством признаков. Для работы с нейросетью рекомендуется использовать исходные данные не в первоначальном виде, а после предварительной обработки при помощи процедуры индивидуальной нормировки по отдельному признаку, описанной в разделе 5.2. Это преобразование состоит в следующем где x i - исходное значение вектора признаков, точнее его i-я компонента x i, min - минимальное значение по i-му признаку, найденное из всей совокупности исходных данных, включающей оба класса событий x i, max - максимальное значение по i-му признаку Выбор именно этой нормировки, а не более универсальных, которые описаны в разделе 5, в настоящих исследованиях продиктован тем обстоятельством, что непосредственно признаки, измеренные по сейсмограммам, подвергаются последовательно двум нелинейным преобразованиям в соответствии с функциями y Ln x и z 1 7 y 1 7 -1 , и уже из этих значений формируются обучающие вектора. Такие преобразования приводят к большей кластеризации точек в многомерном пространстве, однако диапазон изменения каждого из признаков не нормирован относительно интервала -1,1 , а выбранная нормировка позволяет без потери информации перенести все входные значения в нужный диапазон. 6.3

– Конец работы –

Эта тема принадлежит разделу:

Классификация сейсмических сигналов на основе нейросетевых технологий

Существуют задачи, решение которых просто невозможно аналитическими методами, а нейросети успешно с ними справляются. Даже в том случае, если можно… В данном дипломе рассматривается задача, возникающая при сейсмическом… Несмотря на то, что для ее решения, в настоящее время успешно применяются методы статистического анализа, …

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Реализация нейросетевой модели и исследование ее технических характеристик

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные положения теории нейронных сетей
Основные положения теории нейронных сетей. Для того, чтобы обсуждать возможности нейросетевых технологий, необходимо хотя бы немного иметь представление об элементарных понятиях, о том, что же тако

Постановка задачи классификации сейсмических сигналов
Постановка задачи классификации сейсмических сигналов. Международная система мониторинга МСМ , сформировавшаяся в мире за последние десятилетия, предназначена для наблюдения за сейсмически активным

Выделение информационных признаков из сейсмограмм
Выделение информационных признаков из сейсмограмм. Исходные данные представлены в виде сейсмограмм рис. 3.1 - это временное отображение колебаний земной поверхности. В таком виде анализирова

Отбор наиболее информативных признаков для идентификации
Отбор наиболее информативных признаков для идентификации. Как было показано выше, в сейсмограмме анализируемого события можно выделить достаточно много различных характеристик, однако, далеко не вс

Оценка вероятности ошибочной классификации методом скользящего экзамена
Оценка вероятности ошибочной классификации методом скользящего экзамена. Оценивание вероятности ошибочной идентификации типа событий землетрясение-взрыв, в каждом конкретном регионе представляет со

Нейрон-классификатор
Нейрон-классификатор. получал на свои входы уже линейно-разделимые множества. Такие структуры носят название многослойные персептроны 1-4,7,10 рис. 1.3 . Легко показать, что, в принципе, все

Методы предварительной обработки данных
Методы предварительной обработки данных. Если возникает необходимость использовать нейросетевые методы для решения конкретных задач, то первое с чем приходится сталкиваться - это подготовка данных.

Максимизация энтропии как цель предобработки
Максимизация энтропии как цель предобработки. Рассмотрим основной руководящий принцип, общий для всех этапов предобработки данных. Допустим, что в исходные данные представлены в числовой фор

Выбор начальных весовых коэффициентов
Выбор начальных весовых коэффициентов. Перед тем, как приступить к обучению нейронной сети, необходимо задать ее начальное состояние. От того насколько удачно будут выбраны начальные значения весов

Алгоритм обучения и методы его оптимизации
Алгоритм обучения и методы его оптимизации. Приступая к обучению выбранной нейросетевой модели, необходимо было решить, какой из известных типов алгоритмов, градиентный обратное распространения оши

Формирование обучающей выборки и оценка эффективности обученной нейросетевой модели
Формирование обучающей выборки и оценка эффективности обученной нейросетевой модели. Из исходных данных необходимо сформировать как минимум две выборки - обучающую и проверочную. Обучающая в

Функциональные возможности программы
Функциональные возможности программы. В программе nvclass. с - нейро-классификатор векторов данных реализована модель двухслойного персептрона, представленная в разделе 6. Эта программа пред

Общие сведения
Общие сведения. Программный пакет предназначенный для идентификации типа сейсмического события включает следующие модули Исходный код программы nvclass. c и nvclass. h Файл с настройками режима раб

Описание входного файла с исходными данными
Описание входного файла с исходными данными. В качестве исходных данных используется отформатированный текстовый файл, в котором хранится информация о размерности векторов, их количестве и с

Описание файла настроек
Описание файла настроек. Параметры настройки программы содержаться во входном файле nvclass. inp. Пример файла приведен в приложении 3. Для настройки используются следующие переменные TYPE -

Эксплуатация программного продукта
Эксплуатация программного продукта. Перед тем, как приступить к эксплуатации программного продукта рекомендуется ознакомиться с форматом данных, в котором должны быть записаны исходная выбор

Результат работы программы
Результат работы программы. Для исследований возможностей разработанного программного обеспечения были проведены различные эксперименты, основная цель которых - подобрать значения параметров

Пример файла с векторами признаков
Пример файла с векторами признаков. Представлена выборка из файла 9 Norv. txt, содержащего 9 размерные вектора признаков. NumOfPattern 86 PatternDimens 9 1 -14.3104 -13.2561 -13.4705 -13.430

Файл с настройками программы
Файл с настройками программы. Common parameters for programm NVCLASS 1 1 - OnlyTest mode, 1 2 - TestAfterLearn mode, 2 1 - CheckOneVector, 2 2 - CrossValidation mode. TYPE 2 2 NDATA 9 NPATTERN 86 P

Пример файла отчета
Пример файла отчета. NVCLASS report - Wed Jun 02 15 58 02 1999 Type 1 2 Neural Net - 18,12,1 PatternFile - vect. txt Test Vector s - vector. tst ResNetFname - 12. net LearnTolerance 0.10 Ini

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги