рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Методические рекомендации

Методические рекомендации - раздел Электротехника, Теоретические основы электротехники -Для Бесперебойной И Эффективной Работы Электротехнического Оборудования И Пр...

-Для бесперебойной и эффективной работы электротехнического оборудования и приборов следует иметь характеристики различных режимов, которые можно получить в результате расчета электрических цепей.

-Расчет электрических цепей сводится к определению тока в ветвях, на-пряжений на отдельных участках и мощностей, потребляемых нагрузками.

-Учащийся должен знать, что кроме закона Ома, для расчета электриче-ских цепей применяются первый и второй законы Кирхгофа, являющиеся следствием закона сохранения энергии.

-Первый закон Кирхгофа применяют к узлам электрической цепи. Второй закон применяют для контуров электрической цепи.

-Методика расчета любой электрической цепи зависит от вида ее электрической схемы.

-Все электрические цепи в порядке возрастающей трудности метода расчета можно разделить на несколько типов:

-последовательные, параллельные, смешанные цепи с одним источником электродвижущей силы ЭДС Е;

-такие же цепи с несколькими источниками ЭДС Е;

-цепи с одним источником ЭДС Е, которые даже преобразованиями нельзя привести ни к последовательному, ни к параллельному, ни к смешанному соединению;

-такие же цепи с несколькими источниками ЭДС Е, т.е. сложные электрические цепи.

Расчет сложных цепей с несколькими источниками ЭДС может производиться различными методами. Очень важно не только понять сущность этих методов, но и научиться выбирать из них наиболее подходящий для решения поставленной задачи.

К основным методам расчета сложных электрических цепей постоянного тока относятся:

1. метод узловых и контурных уравнений (применение законов Кирхгофа);

2. метод контурных токов;

3. метод узлового напряжения;

4. метод преобразования;

5. метод наложения;

6. метод эквивалентного генератора (метод холостого хода и короткого замыкания).

Методом узловых и контурных уравнений можно рассчитывать электрическую цепь любой конфигурации и сложности. Если для рассматриваемой цепи заданы величины всех Э.Д.С, и сопротивлений, то для нахождения всех токов требуется столько расчетных уравнений, сколько в цепи неизвестных токов (по числу ветвей). При этом число независимых узловых уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов цепи.

(n-1)

где n – количество узлов

Остальные уравнения должны быть контурные, и составляются по второму закону Кирхгофа

m-(n-1)

где m – количество ветвей.

Контурные уравнения рекомендуется составлять для более простых контуров с меньшим числом сопротивлений и источников питания. Кроме того, каждый новый контур, для которого составляется очередное уравнение, должен содержать не менее одной ветви, не входившей в контур, для которых уже составлены уравнения. Выполнение последнего условия обеспечивает независимость составленных уравнений.

Помните, что прежде чем, приступить к составлению уравнений по законам Кирхгофа, нужно выбрать условно положительное направление тока в каждой ветви, что делается произвольно.

Действительные направления токов могут не совпадать с условно положи-тельными направлениями. Ошибка в выборе направления тока в результате решения будет обнаружена — ток с неправильно выбранным направлением получится отрицательным. Следует изменить направление этого тока в схеме и считать его в дальнейшем положительным. Правильность определения токов в цепи можно проверить, составив баланс мощностей цепи.

Этот вопрос хорошо освещен в [4, § 5.1] и [9 §2.11]

Метод контурных токов требует меньшего числа расчетных уравнений по сравнению с методом узловых и контурных уравнений и поэтому сокращает расчеты цепей.

Метод основан на применении второго закона Кирхгофа.

Схема разделяется на ячейки (независимые контуры), и для каждой ячейки вводится свой ток - контурный ток.

 

Контурный ток - это некоторая расчетная величина, которая одинакова для всех участков данного контура.

Отдельные ветви схемы одновременно могут входить в два смежных контура. Действительный ток в такой ветви определяется наложением контурных токов, соответствующих смежным контурам.

Для каждого контура составляется уравнение по второму закону Кирхгофа, причем направление обхода контура принимается совпадающим с направлением контурного тока. Число независимых уравнений по второму закону Кирхгофа, равно числу ячеек. В левой части каждого уравнения ,записывается алгебраическая сумма ЭДС, включенных в данный контур, в правую часть общее падение напряжения в данном контуре от контурного тока этого контура и падение напряжения от контурных токов смежных контуров.

Знаки ЭДС и падений напряжения в этих уравнениях определяются так же, как и в обычных контурных уравнениях.

После решения этих уравнений определяются все контурные токи. Затем переходят к определению действительных токов в ветвях цепи.

Изучите этот вопрос в [4 §5.4] и [9, §2.12]

Метод узлового напряжения дает возможность более просто, по сравнению с другими ранее рассмотренными методами, определить токи в цепи с двумя узлами.

Для расчета применяется формула, определяющая напряжение между узловыми точками:

U=

Где ∑(Е·q) - алгебраическая сумма произведений ЭДС на проводимость соответствующей ветви;

∑q – сумма проводимостей всех ветвей цепи

А затем определяются токи в ветвях, используя второй закон Кирхгофа.

Этот вопрос хорошо проработан в [4, §5.5] и [9, §2.9].

Метод наложения можно применять для определения токов в цепи, в которой одновременно действуют несколько ЭДС, применив принцип наложения.

Сущность принципа наложения заключается в том, что ток в какой-либо ветви цепи с сопротивлениями, не зависящими от токов и напряжении, (линейной цепи), равен алгебраической сумме частичных токов, создаваемых в этой ветви, всеми поочередно действующими ЭДС.

Метод наложения ,позволяет заменить расчет одной сложной цепи с несколь-кими источниками энергии расчетом нескольких цепей с одним источником энергии в каждой. Цепь с одним источником энергии рассчитывается любым методом.

Таким образом, для каждой цепи получается столько частичных токов, сколь-ко источников ЭДС содержит эта цепь.

Алгебраическая сумма частичных токов равна току в ветви при одновремен-ном действии всех источников с учетом направления токов.

Изучите этот вопрос по учебникам [4, §5.2] и [9, §2.10]

Метод эквивалентного генератора целесообразно применять для опре-деления тока в какой-либо одной ветви сложной цепи.

Для расчета заданную сложную цепь разбивают на две части: участок цепи или ветвь с сопротивлением R, в которой надо определить ток I, и остальную часть цепи, состоящую из источников питания и сопротивлений, соединенных по любой схеме. Эту вторую часть цепи называют активным двухполюсником.

Двухполюсник (часть цепи с двумя зажимами), не содержащий источник питания, называют пассивным, а содержащий источник питания - активным.

Активный двухполюсник может быть заменен источником или эквивалент-ным генератором с ЭДС (Е0) и внутренним сопротивлением Ro.

Для определения тока I в ветви с сопротивлением R надо найти ЭДС эквива-лентного генератора Его, и его внутреннее сопротивление Ro. Определение этих параметров опытным путем описано в [4 §5.3 с 82] и [9 §2.14 с 90].

Этот вопрос вы можете подготовить, изучив темы в учебниках [4, §5.3] и [9, §2.14].

 

Вопросы для самоконтроля:

• Поясните цели расчета электрических цепей.

• Объясните задачи расчета электрических цепей.

• Расскажите классификацию методов расчета электрических цепей постоянного тока.

• Поясните особенности последовательного соединения элементов электрической цепи.

• Поясните особенности параллельного соединения элементов электрической цепи.

• Объясните, что называют проводимостью цепи.

• Поясните, какое соединение электрической цепи называется простым, а какое сложным.

• Перечислите методы расчета сложных электрических цепей.

• Сформулируйте закон Ома.

• Сформулируйте и объясните первый закон Кирхгофа.

• Сформулируйте и объясните второй закон Кирхгофа.

• Поясните, от чего зависит методика расчета электрической цепи.

13. Охарактеризуйте метод узловых и контурных уравнений.

14. Охарактеризуйте метод контурных токов.

15. Охарактеризуйте метод узлового напряжения.

16. Охарактеризуйте метод эквивалентного генератора.

17. Охарактеризуйте метод наложения.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Теоретические основы электротехники

Учреждение образования.. могилевский государственный технологический колледж..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Методические рекомендации

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Пояснительная записка
Учебная дисциплина «Теоретические основы электротехники (ТОЭ)» входит в учебный план ряда специальности ССУЗ. Предмет «Теоретические основы электротехники» базируется на знании общеобразов

Перечень рекомендуемой литературы
• Буртаев Ю.В. Теоретические основы электротехники: учебник для техникумов / Ю. В. Буртаев, П.Н.Овсянников.- М.: Энергоатомиздат: 1984.- 552 с. • Евдокимов Ф.Е. Теоретические основы электр

Методические рекомендации
Приступая к изучению учебной дисциплины, необходимо уяснить, какие свойства электрической энергии явились причиной ее широкого применения в различных отраслях промышленности, и какие русские ученые

Тема 1.1 Физические процессы в электрических цепях
Электрическое поле и его основные характеристики: напряженность, по-тенциал, напряжение. Электрическое поле как вид материи. Стационарное электрическое поле в проводнике при постоянном эле

Методические рекомендации
Изучение материала данной темы базируется на знании строения ве-щества. Следует уяснить, что электромагнитное поле может существовать от-дельно от частиц, распространяясь в пространстве, а

Тема 1.2 Расчет линейных электрических цепей постоянного тока
Задачи расчета электрических цепей. Элементы схемы электрических цепей: ветвь, узел, контур. 1-й закон Кирхгофа и узловые уравнения. 2-й закон Кирхгофа и контурные уравнения.

Методические рекомендации
В устройствах ЭВМ, автоматики, электроники, радиотехники нашли широкое применение элементы электрических цепей с нелинейными вольтамперными характеристиками: электронные лампы, кремниевые, селеновы

Методические рекомендации
Прежде чем начать изучение данной темы, следует вспомнить из первой темы определение электрического и электростатического полей и их харак-теристики. Для расчёта электростатических полей и

Тема 2.2 Электростатическое поле в диэлектрике
Понятие о физическом строении диэлектрика, электрическом моменте диполя. Поляризация диэлектрика, поляризованность (степень поляризации). Остаточная поляризация в сегнетоэлектриках. Электр

Методические рекомендации
Диэлектрики – вещества, у которых количество свободно заряженных частиц в единице объема очень мало. При наличии электрического поля в нем преобладают электростатические явления. С физичес

Методические рекомендации
Часто расчетная емкость конденсатора отличается от типовой, поэтому на практике, применяются различные комбинации соединений конденсаторов для того, чтобы получить требуемую емкость. Необходимо зна

Тема2.4 Магнитное поле в неферромагнитной среде
Магнитное поле, как вид материи. Закон Ампера; магнитная постоянная, Магнитная индукция - силовая характеристика магнитного поля. Формула Био-Савара и её применение для расчёта ма

Методические рекомендации
Магнитное поле создается движущимися зарядами (электрическим током), а также внутриатомными и внутримолекулярными движениями заря- женных частиц в постоянных магнитах. Количествен

Тема 2.5 Магнитное поле в ферромагнитной среде.
Магнитные свойства вещества. Намагничивание вещества, намагниченность (степень намагничивания). Напряженность магнитного поля. Магнитная проницаемость абсолютная и относительная. Закон полного тока

Методические рекомендации
    При изучении магнитных свойств вещества следует уяснить, что любое вещество, находящееся в зоне поля внешних токов (токов в проводах), при-ходит в особое состояние н

Магнитные цепи
Классификация магнитных цепей. Закон полного тока в применении к магнитной цепи. Расчет неразветвленной однородной магнитной цепи: решение прямой и обратной задач; понятие о магнитном сопр

Методические рекомендации
Многие современные электротехнические устройства (электрические машины, трансформаторы, электромагнитные аппараты и др.) устроены так, что магнитный поток, создаваемый внешними токами, замыкается п

Тема 2.7 Электромагнитная индукция
Явление электромагнитной индукции. Закон электромагнитно индукции. Правило (закон) Ленца. Выражение ЭДС, индуктируемой в проводнике, движущемся в магнит-ном поле. Правило правой руки. Сущн

Методические рекомендации
Явление электромагнитной индукции проявляется в том, что при вся-ком изменении магнитного потока, пронизывающего контур (участок кон-тура), в нем наводится (индуктируется) электродвижущая сила.

Тема 3.1 Основные сведения о синусоидальном электрическом токе
Получение синусоидальной ЭДС. Схема устройства генератора переменного тока. Уравнение и графики синусоидальных величин: мгно-венное и амплитудное значение, период, частота, фаза, начальная фаза, уг

Методические рекомендации
Переменный ток – это электрический ток, который с течением времени изменяется по величине и направлению. При дальнейшем изучении курса «Теоретические основы электротехники» чаще придется встречатьс

Тема 3.2 Элементы электрических цепей переменного тока
Элементы цепей переменного тока: резисторы, катушки индуктивности, конденсаторы. Сопротивление, индуктивность и емкость- параметры электрических цепей переменного тока. Цепь переменного то

Методические рекомендации
Для лучшего усвоения материала данной темы рекомендуем вначале рассмотреть идеализированные цепи, характеризующиеся: только активным сопротивлением (лампы накаливания, сопротивления, нагревательные

Тема 3.3 Расчет электрических цепей переменного тока с помощью векторных диаграмм
Расчет неразветвленных цепей синусоидального тока с одним источником питания: цепь с активным сопротивлением и индуктивностью (μ, L), цепь с активным сопротивлением и емкостью (μ

Методические рекомендации
Одним из основных методов расчета цепей переменного является метод векторных диаграмм. Векторную диаграмму для неразветвленной цепи начинают строить с вектора тока, одинакового для всей це

Тема 3.4 Расчёт электрических цепей синусоидального тока с применением комплексных чисел
Выражение синусоидальных напряжений и токов комплексными числами. Комплексные сопротивление и проводимость. Вычисление мощности по известным комплексным напряжению и току. Законы Ома и Кир

Методические рекомендации
Прежде чем изучать эту тему, следует повторить из курса математики тему "Комплексные числа", а из курса "Теоретические основы электротехники" [9, с. 314-331] графические способы

Понятие об однофазной и многофазной системах электрических цепей.
Трехфазные системы ЭДС, токов, электрических цепей. Симметричная трехфазная система ЭДС Схема устройства трехфазного электромашинного генератора. Соединение обмоток трехфазного генератора (трансфор

Методические рекомендации
Приступая к изучению темы, следует знать, что обмотки (фазы) трех-фазного генератора выполняют одинаковыми и располагает под углом 120°, следовательно, в них находится синусоидальная эдс одинаковой

Тема 3.6 Электрические цепи с несинусоидальными периодическими напряжениями и токами
Причины возникновения несинусоидальных эдс токов и напряжений в электрических цепях: искажение эдс в электромашинном генераторе, наличие в цепях нелинейных элементов. Аналитическое выражен

Методические рекомендации
Для изучения и расчета цепей с несинусоидальными токами исполь-зуется теорема Фурье, согласно которой любая периодически изменяющаяся кривая может быть разложена на постоянную составляющую (А0

Тема 3.7 Нелинейные электрические цепи переменного тока
Общая характеристика нелинейных цепей и нелинейных элементов переменного тока. Цепи с нелинейными активными сопротивлениями, цепи с венти-лями. Примеры цепей с нелинейными сопротивл

Методические рекомендации
Нелинейные элементы в цепи переменного тока можно разделить на три группы: 1) нелинейные активные сопротивления - лампы накаливания, электронные лампы, различных типов вентили, термисторы,

Вопросы для самоконтроля.
1. Поясните, какие нелинейные элементы используются в цепях переменного тока? 2. Поясните, что такое вентиль? 3. Расскажите, какой вид имеют вольтамперные характеристика ид

Тема 3.8 Переходные процессы в электрических цепях
Общие сведения о переходных процессах в электрических цепях: причины возникновения переходных процессов, первой и второй законы коммутации, понятие о переходных, принужденном и свободном режимах.

Методические рекомендации
В предыдущих темах рассматривалась одна или несколько связанных электрических цепей, состоящих из сопротивлений, катушек (индуктивностей), конденсаторов (емкостей), сосредоточенных в одном месте. Р

Тема 4.1. Некоторые методы анализа сложных электрических цепей постоянного тока
Матричные методы расчета сложных электрических цепей постоянного тока: контурных токов, узловых потенциалов. Алгоритм расчета сложных электрических цепей постоянного тока на ЭВМ. Методы ан

Методические рекомендации
Расчет нелинейных цепей постоянного тока производится аналитическим и графическим методами. Изучите принцип решения задач с нелинейными элементами на основе их вольтамперных характеристик, а также

Методические рекомендации
Для понимания резонансных явлений очень важно иметь представление о процессах в колебательном контуре, состоящем из идеальных катушки и конденсатора, т.е. в контуре без потерь. Колебательн

Методические рекомендации
Ранее рассматривались цепи содержащие только элементы L, r и С, что позволило несколько упростить изложение. Здесь будут рассмотрены цепи, содержащие также индуктивные связи между ветвями или конту

Тема 4.4 Круговые диаграммы
Применение круговых диаграмм для расчета электрических цепей синусоидального тока. Круговые диаграммы неразветвленных цепей с постоянным реактивным и переменным активным сопротивлением, постоянным

Методические рекомендации
При изучении этой темы обратите внимание на выбор масштаба по току и по напряжению (другим параметрам). Изучите построение круговых диаграмм для разветвленной и неразветвленной цепей с одним переме

Тема 4.5 Четырехполюсники при синусоидальных токах и напряжениях
Основные понятия о четырехполюсниках: общая схема, входные и выходные зажимы четырехполюсника, активные и пассивные четырех-полюсники. Уравнения четырехполюсника. Коэффициенты четырехполюс

Методические рекомендации
Ранее рассматривались расчеты двухполюсников. Четырехполюсни-ком называется часть электрической цепи, имеющая две пары зажимов. К одной паре зажимов- входных может быть присоединен источни

Вопросы для самоконтроля.
• Поясните, что называют четырехполюсником? • Объясните, какие четырехполюсники активные, а какие пассивные? • Запишите зависимости между входными и выходными параметрами четырехп

Тема 4.6 Несимметричные трехфазные цепи
Несимметричная трехфазная цепь при соединении источника и приемника звездой : определение токов в цепи, применение метода узлового напряжения для расчета цепи, смещение нейтрали, определение мощнос

Методические рекомендации
Изучая эту тему, необходимо научиться рассчитывать трехфазные цепи при соединении фаз приемника звездой и треугольником при несимметричной нагрузке. Определять токи в цепи, смещение нейтрали, мощно

Тема 4.7 Магнитное поле переменного тока
Магнитное поле распределенной обмотки при постоянном токе. Магнитное поле при синусоидальном токе и его расположение на два вращающихся. Зависимость скорости вращения магнитного поля от числа пар п

Методические рекомендации
При изучении темы необходимо изучить магнитное поле распределенной обмотки при постоянном токе. Магнитное поле при синусоидальном токе и его разложение на два вращающихся. Зависимость скорости вращ

Тема 4.9 Электрические цепи с распределенными параметрами
Понятие о распределенных параметрах. Примеры электрических цепей с распределенными параметрами. Схемы замещения однородной линии с потерями и без них. Основные уравнения длинной линии и их

Методические рекомендации
При изучении электрических цепей до сих пор не учитывали размеры устройств, предполагали, что R, L, C сосредоточены, однако, существуют объекты такие как обмотки электрических машин, трансформаторо

Методические рекомендации по выполнению контрольных и лабораторных работ
По учебной дисциплине ТОЭ для учащихся 3Эз предусмотрено выполнение двух контрольных работ. Для учащихся 3Уз – одна контрольная работа, состоящая из решения 5 задач с контрольных работ №1 и №2 (по

Контрольная работа №1
Задача №1. В цепи, схема которой изображена на рисунок 1, ЭДС первого источника Е1,

Методические указания к выполнению контрольной работы №1
В контрольную работу №1 входят: “Введение” и шесть тем. В таблице указаны номера задач к соответствующей теме и номера таблиц с данными к этим задачам. Номера тем

Методические указания к решению задач 1 – 2 .
Решение этих задач требует знания законов Ома для всей цепи и ее участков, первого и второго правил Кирхгофа, методики определения эквивалентного сопротивления цепи при смешанном соединении резисто

Методические указания к решению задач 12-21
Решение этих задач требует знания законов Ома для всей цепи и ее участков, первого и второго правил Кирхгофа, порядка расчета сложных (2 и более источника Э.Д.С.) цепей постоянного тока различными

Методические указания к решению задач № 32-41
При решении этих задач необходимо знать свойства магнитного поля, образованного как одним током, так и несколькими. Необходимо помнить, что провода с одинаковым направлением токов в них притягивают

Контрольная работа №2
Задачи №1, 2, 3, 4, 5, 6. Неразветвленная цепь переменного тока содержит резисторы, индуктивно

Методические указания к решению задач 1 – 6 .
Решение этих задач требует знания законов Ома для всей цепи и ее участков, первого и второго правил Кирхгофа применительно к цепям переменного тока, методики определения полного сопротивления цепи,

Методические указания к решению задач 7 – 11
Решение этих задач требует знаний характера нагрузки на отдельных участках неразветвленной цепи переменного тока в зависимости от взаимного расположения векторов тока и прикладываемого напряжения к

Методические указания к решению задач 12 – 16
Решение этих задач требует знаний закона Ома для участка цепи 1-го и 2-го правил Кирхгофа применительно к цепям переменного тока, методики определения активной и реактивной составляющих токов ветве

Методические указания к решению задач 17 – 21
Решение этих задач требует знаний характера нагрузки в ветвях разветвленной цепи переменного тока по взаимному расположению векторов тока ветви и прикладываемого к ней напряжения на векторной диагр

Методические указания к решению задач 22-26
Решение этих задач требует знаний закона Ома для участка цепи 1-го и 2-го правил Кирхгофа применительно к цепям переменного тока, методики определения характера проводимостей в ветвях, полного сопр

Методические указания к решению задач 27-31
Решение этих задач требует знаний сущности символического метода расчета цепей переменного тока, 3-х форм комплексного числа, алгебраических действий с комплексными числами, перехода из одной формы

Методические указания к решению задач 32-36
Решение этих задач требует знаний символического метода расчета цепей переменного тока, соотношений между линейными и фазными токами и напряжениями при соединении трехфазного потребителя звездой ил

Методические указания к решению задач 37-38
Решение этих задач требует знаний теоремы Фурье применительно к цепям переменного тока, зависимости величины индуктивного и емкостного сопротивлений цепи от порядкового номера гармоники несинусоида

Линейные и нелинейные электрические цепи постоянного тока
Физические процессы в электрических цепях 1. Электрическое поле и его основные характеристики: напряженность, потенциал, напряжение. Электрическое поле как вид материи. 2. Стацион

Расчет линейных электрических цепей постоянного тока
1. Задачи расчета электрических цепей. Элементы схем электрических цепей: ветвь, узел, контур. 2. Первый закон Кирхгофа для разветвленной цепи, узловые уравнения. 3. Второй закон

Электростатическое поле в пустоте
1. Закон Кулона. Применение закона Кулона для расчета электростатического поля точечных заряженных тел. 2. Симметричные электростатические поля, созданные зарядами, распределенными на плос

Электростатические цепи
1. Электрическая емкость в системе заряженных тел. 2. Соединение конденсаторов с идеальным диэлектриком: последовательное, параллельное. 3. Расчет электростатических цепей при соч

Магнитные цепи
55.Классификация магнитных цепей. Закон полного тока в применении к магнитной цепи. 1. Расчет неразветвленной однородной магнитной цепи: решение прямой и обратной задач, понятие о магнитно

Электромагнитная индукция
1. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило (закон) Ленца. 2. Выражение ЭДС, индуктируемой в проводнике, движущемся в магнитном поле. Правило правой руки

Основные сведения о синусоидальном электрическом токе
66. Получение синусоидальной ЭДС. Схема устройства генератора переменного тока. Уравнения и графики синусоидальных величин: мгновенное и амплитудное значения, период, частота, фаза, начальн

Тока с помощью векторных диаграмм
76. Расчет неразветвленной цепи синусоидального тока с одним источником питания при последовательном соединении активного сопротивления, индуктивности и емкости при различных соотношениях величин р

Комплексных чисел
83.Выражение синусоидальных напряжений и токов комплексными числами. Комплексные сопротивления и проводимость. Вычисление мощности по известным комплексным напряжению и току. 84.3аконы Ома

Фазные и линейные напряжения, соотношение между ними.
91. Симметричная нагрузка в трехфазной цепи при соединении приемника звездой и треугольником. Фазные и линейные токи, соотношение между ними. 92.Расчет симметричной цепи при соединении при

Электрические цепи с несинусоидальными периодическими напряжениями и токами
96.Причины возникновения несинусоидальных ЭДС, токов и напряжений в электрических цепях. Аналитическое выражение несинусоидальных периодических величин в форме тригонометрического ряда. Понятие о р

Нелинейные электрические цепи переменного тока
100.Общая характеристика нелинейных элементов переменного тока. 101.Цепи с активными нелинейными сопротивлениями. Цепи с нелинейной емкостью. Цепи с нелинейной индуктивностью. 102

Постоянного тока
1. Матричные методы расчета сложных электрических цепей постоянного тока: контурных токов, узловых потенциалов. Алгоритм расчета сложных электрических цепей постоянного тока на ЭВМ. 2. Мет

Круговые диаграммы
1. Применение круговых диаграмм для расчета электрических цепей синусоидального тока. Круговые диаграммы неразветвленных цепей с постоянным реактивным и переменным активным сопротивлениями, постоян

Несимметричная трехфазная цепь
  130. Несимметричная трехфазная цепь при соединении источника и приемника звездой: определение токов в цепи, применение метода узлового напряжения для расчета цепи, смещение

Электрические цепи с распределенными параметрами
1. Понятие о распределенных параметрах. Примеры электрических цепей с распределенными параметрами. Схемы замещения однородной линии с потерями и без них. 2. Основные уравнения длинной лини

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги