рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ТРАНСПОРТ ВЕЩЕСТВ В ОРГАНИЗМЕ БИОМЕМБРАНОЛОГИЯ

ТРАНСПОРТ ВЕЩЕСТВ В ОРГАНИЗМЕ БИОМЕМБРАНОЛОГИЯ - раздел Электроника, КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ Структура И Функции Биологических Мембран   Для Органи...

СТРУКТУРА И ФУНКЦИИ БИОЛОГИЧЕСКИХ МЕМБРАН

 

Для организма, как для открытой системы, характерен обмен с окружающей средой энергией, веществом и информацией. Необходимым условием обмена веществ является их транспорт внутри биологической системы. Все вещества, из которых состоит организм, перемещаются в нем с потоком крови и лимфы, они преодолевают значительные расстояния, обеспечивая обмен между органами и тканями. В ходе обмена между кровью и тканями, вещества проникают сквозь стенки кровеносных сосудов. Внутри клеток происходит непрерывный транспорт веществ через мембраны органелл. Заболевания, при которых нарушен транспорт веществ в организме, связаны, прежде всего, с различными нарушениями молекулярной организации биологических мембран – (БМ).

Термин "мембрана" используют в биологии, обозначая им клеточную границу, которой свойственна полупроницаемость, то есть, легкость проникновения сквозь нее одних веществ при невозможности преодоления ее другими.

Каждая клетка окружена наружной мембраной, которая называется плазматической мембраной или плазмолеммой. В настоящее время клетку стали воспринимать, как обширную сеть мембранных систем, составляющих важнейший элемент клеточной организации; соотношение между плазмолеммой и внутриклеточной мембраной неодинаково в различных клетках. Так, в клетках хрусталика глаза нет никаких других мембран, кроме плазматических, тогда, как в почечных клетках (гепатоцитах), площадь плазматических мембран составляет порядка 6% от поверхности, занимаемой всеми мембранами клетки. Установлено, что по мере увеличения отношения сумм площади мембран к объему клетки, повышается интенсивность обменных процессов в этой клетке.

Электронная микроскопия клеточных мембран не позволяет их увидеть, так как они состоят из тех же химических элементов, что и цитоплазма. Для получения четкой электронограммы клетки, ее мембраны контрастируют. Для этого производят осаждение на них вольфрама, осмия и других элементов, которые хорошо поглощают и рассеивают электроны. На таких препарированных клетках любая БМ выглядит трехслойной: между двумя темными полосами располагается светлое пространство.

 

Следовательно, компоненты промежуточной части БМ слабо связывают входящие в состав красители. Суммарная толщина трехслойной структуры может изменяться от 7 до 15 нм, причем, разная величина присуща различным клеточным мембранам. Во многих БМ наблюдается асимметрия трехслойной организации, то есть, темные полосы различны по ширине и по плотности.

Все клеточные мембраны построены в основном из липидов, белков (протеинов) и углеводов. При этом, углеводы образуют соединения с белками (гликопротеины) и липидами (гликолипиды). Органические вещества образуют соли с различными ионами, которые присутствуют в виде водных растворов внутри мембранных каналов.

Структурной основой БМ служит бимолекулярный слой. Его образование обусловлено особенностями взаимодействия с водой мембранных липидов, среди которых преобладают фосфолипиды. В молекуле фосфолипидов условно выделяются 3 части:

- головка;

- тело;

- пара длинных хвостов.

Головка (1) образована одним из таких соединений, как холин, серин, треонин, инозин, эталомин; Головка содержит и остаток фосфорной кислоты.

Тело (2) состоит из молекулы глицерина или сфингозина.

Пара длинных хвостов (3) содержит углеводные цепи жирных кислот. При этом преобладают не разветвленные цепи с четным числом атомов С (обычно от 14 до 24). При этом, в каждой из цепей содержится до шести двойных связей. Чаще всего встречаются: стеариновая, пальмитиновая, оленовая, линолевая, линоленовая, арахидоновая кислоты. Чем больше в мембранах ненасыщенных жирных кислот, тем менее ее жесткость и выше проницаемость для веществ. Так, по мере увеличения числа двойных связей в неполярных цепях фосфолипидов, удлиняются промежутки между головками двух соседних молекул.

Головка фосфолипида либо электронейтральна, либо несет отрицательный заряд. Образующие ее молекула, а также глицерин или сфингозин - гидрофильны, тогда, как жирно-кислотные хвосты - гидрофобны. В этой связи, в воде молекулы фосфолипидов самопроизвольно выстраиваются так, что их гидрофобные углеводородные цепи оказываются укрытыми от воды, а головки вступают во взаимодействие с водой. В результате создается конструкция, поперечник которой включает две молекулы фосфолипидов, повернутых друг к другу жирно-кислотными хвостами и обращенные к обеим наружным поверхностям гидрофильными головками. Графически это можно представить так:

Так образуется сплошной бимолекулярный фосфолипидный слой (бислой), который и служит каркасом биологической мембраны. Для создания 1 поверхности БМ достаточно 1 мг фосфолипида. При этом, на каждый квадратный микрон клеточной мембраны, приходится примерно липидных молекул, то есть, по 2 млн в каждом из моно слоев бесслойной структуры.

Наряду с фосфолипидами, в состав биологических мембран могут входить и другие жиры, причем, характерным свойством большинства из них, является наличие пары углеводородных хвостов. Одноцепочные липиды встречаются крайне редко. В их присутствии, клеточные мембраны имеют тенденцию к разрушению. С этим связана причина гибели людей при укусах тех видов змей, в яде которых имеется особый фермент - фосфолипаза . Он превращает двухцепочные фосфолипиды в одноцепочный липид - лизолецитин, в результате чего мембраны клеток разрушаются. Другой фермент - фосфолипаза , выделяемый некоторыми микроорганизмами (например, холерным виброном), разрушает БМ, "откусывая" полярные головки фосфолипидов.

Особое место среди мембран липидов, занимает холестерин. По мере повышения содержания холестерина в БМ, площадь, занимаемая фосфолипидами сокращается до тех пор, пока на одну молекулу холестерина будет приходиться две молекулы фосфолипида. Эффект сокращения площади, приходящийся на одну молекулу фосфолипида, обусловлен тем, что изменяется наклон его углеводородных цепей к поверхности бислоя. По мере увеличения содержания холестерина в БМ, фосфолипиды стремятся встать перпендикулярно мембранной поверхности. В результате чего, укладка фосфолипидов приобретает большую компактность, и мембрана уплотняется. В результате, она становится более вязкой и менее проницаемой для многих веществ (например, глюкозы, ионов воды и т. д.). Содержание холестерина в клетках зависит от общего холестеринового обмена в организме, который в свою очередь сильно подвержен влиянию пищевого рациона.

 

– Конец работы –

Эта тема принадлежит разделу:

КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ

РЯЗАНСКАЯ ГОСУДАРСТВЕННАЯ РАДИОТЕХНИЧЕСКАЯ АКАДЕМИЯ Кафедра микроэлектроники Б И О Ф И З И К... КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ... Основные понятия квантовой механики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ТРАНСПОРТ ВЕЩЕСТВ В ОРГАНИЗМЕ БИОМЕМБРАНОЛОГИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кафедра микроэлектроники
  Б И О Ф И З И К А     Курс лекций проф. Вихрова С.П. по направлению 653900 "Биомедицинская техника"  

БИОЭНЕРГЕТИКА. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ
(общие сведения)   Жизненные процессы, при всем многообразии, имеют и общие черты, в частности, любой из процессов требует затрат энергии. В этой связи важным направлением би

СВОБОДНАЯ И СВЯЗАННАЯ ЭНЕРГИЯ
  Движение частиц в любом теле может быть упорядоченным и неупорядоченным. Например, у всех молекул газа (или воды), когда он течет по трубе, есть общая составляющая скорости, которая

СТАЦИОНАРНОЕ СОСТОЯНИЕ
  Стационарным называют такое состояние открытой системы, при котором основные макроскопические параметры системы остаются постоянными. Необходимы различные стационар

КВАНТОВОМЕХАНИЧЕСКИЕ ОСОБЕННОСТИ СТРОЕНИЯ БИОМОЛЕКУЛ
  Живые системы на 99 % состоят из атомов . Большую роль биохимических процессов играют а

СПЕКТРЫ ПОГЛОЩЕНИЯ СЛОЖНЫХ МОЛЕКУЛ
  Важным источником информации о структуре сложных молекул являются их спектр и поглощение. Излучение спектров поглощения в УФ и в видимой областях позволяют получать информацию о сис

МЕМБРАННЫЕ БЕЛКИ
В липидный каркас клеточных мембран встроены белковые компоненты (протеины). На каждую клетку в среднем приходится около 10 пг мембранных белков (МБ). Различают периферические и собственные (интегр

ПОДВИЖНОСТЬ МОЛЕКУЛЯРНЫХ КОМПОНЕНТОВ БМ
  Основными формами молекулярного движения в БМ являются: 1. Латеральная миграция (перемещение молекул в плоскости мембраны в пределах одной стороны бимолекулярного слоя).

ФУНКЦИИ БИОЛОГИЧЕСКИХ МЕМБРАН
  Физические, химические и физико-химические свойства биологических мембран предопределяют выполнение ими определенных функций, без которых жизнедеятельность организма невозможна. В с

БИОФИЗИЧЕСКИЕ МЕХАНИЗМЫ ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ БМ
  Различают пассивный и активный транспорт веществ через клеточные мембраны. К пассивному относится транспортно-мембранный массоперенос, происходящий в направлении действия концентрац

КОЭФФИЦИЕНТ ПРОНИЦАЕМОСТИ БМ
  В биофизике используется понятие коэффициента проницаемости, который зависит от коэффициента диффузии, от толщины БМ и коэффициента распределения вещества между липидной частью мемб

СВОБОДНАЯ ДИФФУЗИЯ ЖИРОРАСТВОРИМЫХ ВЕЩЕСТВ
  Установлено, что вещества тем легче проникают в клетку, чем выше их растворимость в липидах, а она высока у неполярных (гидрофобных) веществ. Липофильные соединения проходят через Б

ТРАНСПОРТ С УЧАСТИЕМ ПЕРЕНОСЧИКОВ
  Гидрофильные вещества практически не перемещаются в БМ за счет процессов свободной диффузии. Транспорт многих гидрофильных веществ (моносахаридов, аминокислот, некоторых ионов) обес

МЕМБРАННЫЕ КАНАЛЫ
Канал (пора), заполненный водой, насквозь пронизывает клеточную мембрану. Длина канала, как правило, превосходит линейные размеры поперечного его профиля, который имеет форму круга или неправильног

КОМПОНЕНТЫ СИСТЕМ АКТИВНОГО ТРАНСПОРТА
  В любой системе активного транспорта веществ через биологические мембраны можно выделить три основные компонента: источник свободной энергии, переносчик данного вещества и сопрягающ

СИСТЕМЫ АКТИВНОГО ТРАНСПРТА ИОНОВ
  Система активного транспорта ионов (ионные насосы или ионная помпа) обеспечивает неравновесное распределение ионов между клеткой и межклеточной средой, а также различных органелл. П

КАЛИЕВО-НАТРИЕВЫЙ НАСОС
  Благодаря системам активного транспорта для и

МЕХАНИЗМЫ БИОЭЛЕКТРОГЕНЕЗА И ЕГО РОЛЬ В ВОЗБУЖДЕНИИ
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БИОЭЛЕКТРОГЕНЕЗА (БЭГ)   Живая ткань обладает не только пассивными, но и активными электрическими свойствами, являясь источниками электромагнитной

ВОЗБУДИМЫЕ И НЕВОЗБУДИМЫЕ МЕМБРАНЫ
  Все клеточные БМ можно разделить на возбудимые (электрогенные) и невозбудимые (неэлектрогенные). Для неэлектрогенных БМ присущ только ПП, а для возбудимых БМ присущи как ПП, так и П

РЕФРАКТЕРНОСТЬ
  Процесс возбуждения сопровождается изменением возбудимости БМ. Рефрактерность - это слово, в переводе означающее "невпечатлительность". Рефрактерность - это изменение возб

БИОФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОКАРДИОГРАФИИ
  ЭЛЕМЕНТЫ СТРУКТУРЫ МИОКАРДА И ИХ МЕМБРАННЫЕ ПОТЕНЦИАЛЫ   Механизмы биоэлектрогенеза в миокарде те же самые, что и в других возбудимых тканях. Источни

Этап выдоха.
1. Расслабление дыхательных мышц вслед за сокращением их при вдохе. 2. Уменьшение объема грудной полости. 3. Уменьшение объема легких. 4. Повышение давления в легких.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги