рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

МЕМБРАННЫЕ БЕЛКИ

МЕМБРАННЫЕ БЕЛКИ - раздел Электроника, КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ В Липидный Каркас Клеточных Мембран Встроены Белковые Компоненты (Протеины). ...

В липидный каркас клеточных мембран встроены белковые компоненты (протеины). На каждую клетку в среднем приходится около 10 пг мембранных белков (МБ). Различают периферические и собственные (интегральные) белки биологических мембран. Белки первого типа располагаются на поверхности липидного бислоя. Здесь связь между липидами и белками осуществляется за счет электростатического взаимодействия между противоположно заряженными полярными группами этих веществ. Интегральные белки взаимодействуют своими гидрофобными областями с углеводородными цепочками липидов только за счет Ван-дер-ваальсовых сил. У интегральных белков все гидрофильные области спрятаны внутрь молекулы, а наружу направлены неполярные группы. В этой связи, собственные белки полностью или частично погружаются в биологическую мембрану, при этом крупные белковые молекулы могут пронизывать БМ насквозь.

Наиболее характерным типом вторичных структур интегральных белков является спираль. Причем, на участках, окруженных липидами, преобладает -спираль, у которой все аминокислотные остатки - гидрофобные. Реже встречается - спираль, представляющая собой полое микро трубчатое образование, наружные стенки которого сосредоточены гидрофобные аминокислотные остатки, а внутрь полости ориентированы гидрофильные группы. Предполагается, что белки, имеющие структуру- спирали, образуют ионные каналы в клеточных мембранах.

Функции мембранных белков весьма разнообразны. Среди них можно выделить следующие основные:

1. Обеспечение транспортных свойств БМ (образование мембранных каналов, работа в качестве переносчиков определенных веществ, участие в системах активного транспорта);

2. Белки несут функцию структурного компонента БМ, тем самым, они усиливают прочность липидного каркаса.

3. Большим разнообразием различаются мембранные протеины, катализирующие химические реакции. Причем, белки-ферменты, встроенные в БМ, действуют активнее, чем при их пребывании в растворе. Установлено, что основная часть всех биохимических реакций, протекает на клеточных мембранах.

4. Важным функциональным типом МБ являются белки-рецепторы. Они столь разнообразны, сколь разнообразны стимулы, которые воспринимаются рецепторными белками. Так, например, восприятие света, обеспечивается пигментами, в состав которых, наряду с белками, входят хромофорные группы с определенным спектром поглощения. Таким пигментом является родопсин, который обеспечивает реакции на свет палочек или колбочек.

5. Белки, присутствующие в мембранах любой клетки, осуществляют ее взаимодействие с окружающей средой, а также обмен информацией между органеллами внутри клетки.

6. Белки, образующие антитела, способны связывать специфический антиген (белок бактерии, вируса, токсина и т. д.) и вызывать иммунный ответ клетки, в плазмолемме которой белки сосредоточены.

В различных мембранах белки распределены среди липидов по-разному. В плазмолемме их распределение довольно равномерное. Для специализированных внутриклеточных мембран, характерно неоднородное распределение белков в БМ.

Различия между клеточными мембранами разных типов, между участками БМ и даже, между сторонами одной и той же мембраны, привели к выводу о гетерогенности БМ. Под гетерогенностью понимают разнородность их структур и функциональных свойств. Особенности молекулярных структур клеточных мембран и предопределяют их физические и физико-химические свойства.

 

ФИЗИЧЕСКИЕ И ФИЗИКО-ХИМИЧЕСКИЕ

СВОЙСТВА БМ

 

В живых клетках БМ представляют собой жидкокристаллические структуры. Структуры жидкого кристалла образуют как липидные, так и белковые молекулы. Молекулярной организации клеточных мембран, как жидкого кристалла, характерно состояние с высокой степенью упорядоченности и текучести (лабильности).

БМ присущи такие свойства:

1. Значительная прочность на разрыв.

2. Упругость (эластичность).

3. Поверхностное натяжение.

4. Вязкость.

5. Электрострикция.

6. Флексоэлектрострикция.

Два последних свойства обусловлены наличием повторного заряда на БМ.

 

ПОВЕРХНОСТНЫЙ ЗАРЯД НА КЛЕТОЧНОЙ МЕМБРАНЕ (КМ)

Он создается полярными головками фосфолипидов, гликопродеидами (главным образом, карбоксильными группами сиаловой кислоты и аминокислотными остатками), а также, гликолипидами. За счет этих веществ, поверхность БМ заряжена отрицательно. Поверхностный заряд плазмолеммы играет важную роль в межклеточных взаимодействиях. Он способствует стабильности мембранных структур, а также, связыванию ионов, находящихся в межклеточной среде. От поверхностного заряда плазмолеммы зависит ионный состав предмембранных слоев, что оказывает влияние на многие внутриклеточные обменные процессы.

Существование заряженных групп на БМ приводит к образованию двойного диффузионного электронного слоя, в котором фиксированный отрицательный заряд клеточной поверхности уравновешен положительным зарядом, который создается межклеточной средой за счет положительных ионов. Подвижность ионов не одинакова в различных условиях. Разность потенциалов между неподвижными и подвижными частями двойного электронного слоя называют электрокинетическим потенциалом или дзета потенциалом. Толщина двойного электрического слоя и дзета потенциала зависит от природы электролита и концентрации ионов (в межклеточной среде). Так, при уменьшении концентрации в межклеточной среде в 200 раз, толщина двойного электрического слоя возрастает в 5 раз. При высокой концентрации электролита, дзета потенциал стремиться к нулю. Когда в межклеточной среде присутствуют двухвалентные катионы, избыток положительного заряда может стать настолько велик, что дзета потенциал изменит свой знак. Снижение дзета потенциала и, тем более, изменение его знака на противоположный, вызывает слипание плазматических мембран соседних клеток. Это проявляется при избытке ионов в межклеточной среде, а также, при перестройках клеточных мембран, приводящих к сдвигам дзета потенциала. Подобный эффект имеет свои особенности у клеток крови, в которых дзета потенциал форменных элементов (эритроцитов) может падать за счет нарушения не только солевого, но и белкового состава кровяной плазмы. Это явление лежит в основе изменения скорости осаждения эритроцитов (СОЭ), измерение которых широко используется в диагностических целях.

Дзета потенциал, измеряемый у различных клеток, изменяется в пределах от -10 до -30 мВ. Его величина спадает по exp закону, с увеличением расстояния от поверхности БМ. Дзета потенциал оказывает существенное влияние на размеры межклеточных пространств, и противодействует силам их притяжения. Наименьшее расстояние между клетками составляет порядка 10-20 нм. При таком расстоянии существует энергетическая "яма" во взаимодействии кулоновских и Ван-дер-Ваальсовских сил. В большинстве тканей расстояние между клетками составляет от 0,1 до 1 микрона.

Липидная часть БМ обладает свойствами диэлектрика. Относительная диэлектрическая проницаемость () гидрофобной зоны составляет порядка 2-2,2, тогда, как в гидрофильной части гораздо выше, и составляет около 10-20. Емкость полярных головок липидов достигает примерно 30 , а жирно-кислотные хвосты имеют емкость около 0,5-0,9 . Общая емкость БМ составляет примерно 1.

Благодаря существованию в БМ заряженных групп, ей присуща ярко выраженная электрострикция, то есть, по мере повышения трансмембранной разности потенциалов, БМ сжимается, что приводит к утоньшению гидрофобной зоны мембраны и, соответственно, к увеличению мембранной емкости. Возрастание дзета потенциала сопровождается увеличением клеточной поверхности.

 

МЕХАНИЧЕСКИЕ СВОЙСТВА БМ

 

Механические свойства КМ весьма своеобразны. Величина модуля Юнга в поперечном направлении достигает. Вместе с тем, устойчивость к деформации сдвига примерно на 4 порядка меньше. Сила, достаточная для разрушения БМ на участке в 1 мкм, оценивается величиной примерно . Значительный вклад в повышение упругости и прочности мембраны вносят не только интегральные, но, также, довольно густая цепь периферических белков.

 

ВЯЗКОСТЬ БМ

В живой клетке БМ находятся в жидкокристаллическом состоянии. Жидкокристаллическому состоянию присущи текучесть и определенная вязкость. Величина вязкости была измерена с помощью ЭПР (эл. парамагнитного резонанса) и ДСК (диффузионно - сканирующей микрокаллометрией). Результаты измерения вязкости разными методами совпали. При этом вязкость БМ изменилась от 0,03 до 0,1 Па*с (30-100) или 30-100 сП (сантипуаз). Это примерно в 30-100 раз больше, чем вязкость воды и примерно такая же, как вязкость оливкового или подсолнечного масла. При изменении температуры молекулярного состава и других параметров биологических мембран, изменяется ее вязкость, вследствие чего происходят фазовые изменения в структуре мембраны, то есть, осуществляется переход жидкий кристалл - твердый кристалл.

Одним из важных достоинств температурного гомеостаза является поддержание БМ в жидкокристаллическом состоянии, что обеспечивает стабильность транспорта веществ через нее. Жизнеспособность организма страдает как при понижении, так и при повышении мембранной проницаемости, которая, в свою очередь, зависит от вязкости БМ.

 

– Конец работы –

Эта тема принадлежит разделу:

КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ

РЯЗАНСКАЯ ГОСУДАРСТВЕННАЯ РАДИОТЕХНИЧЕСКАЯ АКАДЕМИЯ Кафедра микроэлектроники Б И О Ф И З И К... КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ... Основные понятия квантовой механики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: МЕМБРАННЫЕ БЕЛКИ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кафедра микроэлектроники
  Б И О Ф И З И К А     Курс лекций проф. Вихрова С.П. по направлению 653900 "Биомедицинская техника"  

БИОЭНЕРГЕТИКА. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ
(общие сведения)   Жизненные процессы, при всем многообразии, имеют и общие черты, в частности, любой из процессов требует затрат энергии. В этой связи важным направлением би

СВОБОДНАЯ И СВЯЗАННАЯ ЭНЕРГИЯ
  Движение частиц в любом теле может быть упорядоченным и неупорядоченным. Например, у всех молекул газа (или воды), когда он течет по трубе, есть общая составляющая скорости, которая

СТАЦИОНАРНОЕ СОСТОЯНИЕ
  Стационарным называют такое состояние открытой системы, при котором основные макроскопические параметры системы остаются постоянными. Необходимы различные стационар

КВАНТОВОМЕХАНИЧЕСКИЕ ОСОБЕННОСТИ СТРОЕНИЯ БИОМОЛЕКУЛ
  Живые системы на 99 % состоят из атомов . Большую роль биохимических процессов играют а

СПЕКТРЫ ПОГЛОЩЕНИЯ СЛОЖНЫХ МОЛЕКУЛ
  Важным источником информации о структуре сложных молекул являются их спектр и поглощение. Излучение спектров поглощения в УФ и в видимой областях позволяют получать информацию о сис

ТРАНСПОРТ ВЕЩЕСТВ В ОРГАНИЗМЕ БИОМЕМБРАНОЛОГИЯ
СТРУКТУРА И ФУНКЦИИ БИОЛОГИЧЕСКИХ МЕМБРАН   Для организма, как для открытой системы, характерен обмен с окружающей средой энергией, веществом и информацией. Необходимым услов

ПОДВИЖНОСТЬ МОЛЕКУЛЯРНЫХ КОМПОНЕНТОВ БМ
  Основными формами молекулярного движения в БМ являются: 1. Латеральная миграция (перемещение молекул в плоскости мембраны в пределах одной стороны бимолекулярного слоя).

ФУНКЦИИ БИОЛОГИЧЕСКИХ МЕМБРАН
  Физические, химические и физико-химические свойства биологических мембран предопределяют выполнение ими определенных функций, без которых жизнедеятельность организма невозможна. В с

БИОФИЗИЧЕСКИЕ МЕХАНИЗМЫ ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ БМ
  Различают пассивный и активный транспорт веществ через клеточные мембраны. К пассивному относится транспортно-мембранный массоперенос, происходящий в направлении действия концентрац

КОЭФФИЦИЕНТ ПРОНИЦАЕМОСТИ БМ
  В биофизике используется понятие коэффициента проницаемости, который зависит от коэффициента диффузии, от толщины БМ и коэффициента распределения вещества между липидной частью мемб

СВОБОДНАЯ ДИФФУЗИЯ ЖИРОРАСТВОРИМЫХ ВЕЩЕСТВ
  Установлено, что вещества тем легче проникают в клетку, чем выше их растворимость в липидах, а она высока у неполярных (гидрофобных) веществ. Липофильные соединения проходят через Б

ТРАНСПОРТ С УЧАСТИЕМ ПЕРЕНОСЧИКОВ
  Гидрофильные вещества практически не перемещаются в БМ за счет процессов свободной диффузии. Транспорт многих гидрофильных веществ (моносахаридов, аминокислот, некоторых ионов) обес

МЕМБРАННЫЕ КАНАЛЫ
Канал (пора), заполненный водой, насквозь пронизывает клеточную мембрану. Длина канала, как правило, превосходит линейные размеры поперечного его профиля, который имеет форму круга или неправильног

КОМПОНЕНТЫ СИСТЕМ АКТИВНОГО ТРАНСПОРТА
  В любой системе активного транспорта веществ через биологические мембраны можно выделить три основные компонента: источник свободной энергии, переносчик данного вещества и сопрягающ

СИСТЕМЫ АКТИВНОГО ТРАНСПРТА ИОНОВ
  Система активного транспорта ионов (ионные насосы или ионная помпа) обеспечивает неравновесное распределение ионов между клеткой и межклеточной средой, а также различных органелл. П

КАЛИЕВО-НАТРИЕВЫЙ НАСОС
  Благодаря системам активного транспорта для и

МЕХАНИЗМЫ БИОЭЛЕКТРОГЕНЕЗА И ЕГО РОЛЬ В ВОЗБУЖДЕНИИ
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БИОЭЛЕКТРОГЕНЕЗА (БЭГ)   Живая ткань обладает не только пассивными, но и активными электрическими свойствами, являясь источниками электромагнитной

ВОЗБУДИМЫЕ И НЕВОЗБУДИМЫЕ МЕМБРАНЫ
  Все клеточные БМ можно разделить на возбудимые (электрогенные) и невозбудимые (неэлектрогенные). Для неэлектрогенных БМ присущ только ПП, а для возбудимых БМ присущи как ПП, так и П

РЕФРАКТЕРНОСТЬ
  Процесс возбуждения сопровождается изменением возбудимости БМ. Рефрактерность - это слово, в переводе означающее "невпечатлительность". Рефрактерность - это изменение возб

БИОФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОКАРДИОГРАФИИ
  ЭЛЕМЕНТЫ СТРУКТУРЫ МИОКАРДА И ИХ МЕМБРАННЫЕ ПОТЕНЦИАЛЫ   Механизмы биоэлектрогенеза в миокарде те же самые, что и в других возбудимых тканях. Источни

Этап выдоха.
1. Расслабление дыхательных мышц вслед за сокращением их при вдохе. 2. Уменьшение объема грудной полости. 3. Уменьшение объема легких. 4. Повышение давления в легких.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги