рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

1.1.12. Формирование вектора скорости при отражении.

1.1.12. Формирование вектора скорости при отражении. - раздел Высокие технологии, Разработка и анализ торцевых поверхностей магнитноразрядного измерителя плотности. При Столкновении Молекулы, Движущейся В Исследуемом Объеме, Со Стенкой Происх...

При столкновении молекулы, движущейся в исследуемом объеме, со стенкой происходит ее отражение. При этом меняется как модуль вектора скорости VV, так и направление ее движения, а следовательно и проекции скорости движения молекулы на оси X, Y, Z. Основные теоретические положения процесса отражения изложены в р.4.

Исходными данными для формирования вектора скорости служат координаты конечной точки прямолинейного участка траектории молекулы (в случае, если эта точка не находится в области отверстия), а также значение модуля вектора скорости до столкновения.

Модуль вектора отраженной скорости в соответствии с (12) определяется из выражения:

                                                      (40)

где    VT - величина скорости, соответствующая температуре стенки, выбранная из распределения Максвелла.

 

После расчета модуля скорости, определяются его проекции на координатные оси XYZ. При этом проекции рассчитываются так, чтобы соблюдался диффузный закон отражения молекул от поверхности.

Для удобства моделирования распределения сформированной величины вектора скорости по проекциям вводится условная система координат X0Y0Z0, ориентированная в пространстве таким образом, что плоскость Y0Z0 - касательная к поверхности в точке отражения, а ось X0 направлена по нормали к этой поверхности. Началом координат в новой системе является точка отражения.

Проекции вектора скорости VV на оси координат X0Y0Z0 определяются выражениями:

vx0=VV×cosb;

vyz0=VV×sinb;

vy0=vyz0×cosa;                                                                                            (41)

vz0=vyz0×sina,

 

где    b - угол, который моделируется в соответствии с распределением вероятности P(b) по закону косинуса и задает отклонение вектора скорости от нормали к поверхности отражения в диапазоне [0,p/2];

a - угол между осью Y0 и проекцией вектора отраженной скорости на плоскость Y0Z0, выбираемый при помощи генератора случайных чисел в диапазоне [0,2p].

 

Интенсивность рассеяния молекул в направлении b пропорциональна cosb, следовательно:

 

           ,                                                                                        (42)

где    db - телесный угол рассеяния;

dS - площадь рассеяния.

 

В свою очередь:

dS = 2p × r0 × sinb × r0 × db = 2p × r02 × sinb × db, тогда:

         

Полученную функцию отнормируем:

 

P(b) = m × P0(b),   где òP0(b) = 1, тогда:

 

          p×r02

 

Таким образом, нормированная функция распределения P0(b):

 

                                                                      (43)

 

В соответствии с выведенным соотношением угол b выбирается с использованием генератора случайных чисел по методу аналогичному методу, примененному при моделировании распределения Максвелла (см.п.7.2.1.).

 

После определения проекций вектора скорости в системе координат X0Y0Z0 необходимо вернуться в исходную систему координат XYZ.

В случае отражения молекулы от торцов исследуемого объема эта процедура не представляет сложности, поскольку при отражении от переднего торца системы координат XYZ и X0Y0Z0 совпадают, и, следовательно:

 

vx = vx0,     vy = vy0,     vz = vz0.                                                                  (44)

 

При отражении молекулы от заднего торца координатные оси Y и Y0 совпадают, а Х и Х0, Z и Z0 взаимно противоположны, таким образом:

 

vx = - vx0,   vy = vy0,    vz = - vz0.                                                               (45)

 

При отражении молекулы от боковой поверхности исследуемого объема и от анода для определения значения проекции вектора скорости на оси Y и Z, необходимо определить угол g между осью Y и проекцией вектора скорости отраженной молекулы на плоскость YZ. Для этого необходимо совместить начала координат систем XYZ и X0Y0Z0, то есть перенести точку отражения в центр координат плоскости YZ (рис.1.7). При отражении молекулы от верхней части боковой стенки исследуемого объема (y2>0) или нижней части анода (y2<0) угол g составит:

g = W1 + p - W3.

 

 
 

 


Рис.1.7 Перенос координат относительно центра

 

При отражении молекулы от боковой стенки при y2<0 или от анода

при y2>0:

g = W1 - W3

Причем:

                   ,

 

 

Поскольку в случае отражения от поверхности анода или боковой стенки система координат X0Y0Z0 ориентирована таким образом, что координатные оси Z0 и X взаимно противоположны, а плоскости X0Y0 и YZ параллельны, то можно записать:

vx = -vz0,                                                          (46)

Тогда проекции вектора скорости vy и vz при отражении от анода или боковой стенки определяются выражениями:

vy =vyz × cosg,

                                                                                                          (47)

vz = vyz × sing                                                               

В случае, если отражение происходит в точке, одна из координат которой (y2, z2) равна нулю, то выражение для проекций вектора скорости на оси YZ принимают вид:

а) При отражении от анода:

- если y2=0, то: ,     ,                                  (48)

 

- если z2=0, то:  ,     ,                               (49)

 

б) При отражении от боковой стенки:

- если y2=0, то:           ,   ,                                (50)

 

- если z2=0, то: , ,                                  (51)

 

Определение положения начала системы координат X0Y0Z0 и, следовательно, выбор выражений для переноса проекций вектора скорости vx0, vy0, vz0 на оси X, Y, Z происходит при анализе переменных Mx и My, значения которых определяются при расчете прямолинейного участка траектории движения молекулы и соответствуют той поверхности исследуемого объема, от которой отражается молекула.

Описанная процедура позволяет рассчитать значение вектора скорости молекулы при отражении ее от любой поверхности исследуемого объема с учетом изменения кинетической энергии при взаимодействии со стенкой, а так же задать ориентацию вектора скорости в пространстве таким образом, чтобы соблюдался закон диффузного отражения.

 

– Конец работы –

Эта тема принадлежит разделу:

Разработка и анализ торцевых поверхностей магнитноразрядного измерителя плотности.

На сайте allrefs.net читайте: "Разработка и анализ торцевых поверхностей магнитноразрядного измерителя плотности."

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: 1.1.12. Формирование вектора скорости при отражении.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Анализ программы MODMD05
1.1.1. Определение концентрации молекул разряженного газа в произвольном объеме   Пусть на некоторый произвольный объем W воздействует свободномолекулярный п

Алгоритм моделирования.
На рисунке 1.6 представлен алгоритм объединяющий локальные задачи в единую систему моделирования аэродинамического взаимодействия свободномолекулярного потока с объемом.

Описание  алгоритма моделирования.
Алгоритм, представленный на рисунке 1.6, программно реализуется при помощи трех файлов: рабочего файла, содержащего написанную на языке Pasccal программу моделирования, файла исходных данных и файл

1.1.8. Формирование исходных данных.
Исходные данные для моделирования формируются из данных, содержащихся в рабочем файле, и данных, которые считываются рабочей программой из файла исходных данных. Величины R, T, Tm

Расчет относительного распределения концентрации молекул в исследуемом объеме. Формирование матрицы результатов. Печать в файл результатов.
  В течение цикла, состоящего из n испытаний, программа формирует матрицу nk[2 × ks,ps], элементы которой представляют собой суммы времен пребывания молекул (tpk) в к

Описание программы моделирования MODMD05
Программа modmd05.pas загружает в среду Паскаль файл исходных данных "inp2.txt" и файл результатов "concentr", устанавливает тип связи программы и файлов и закрывает их после от

Описание программы MODMD24
На базе существующей программы моделирования взаимодействия молекул набегающего потока и СВА с конструктивными элементами MODMD05, была создана программа моделирования MODMD24, в которой введен доп

Описание программы MODMD79
1.3.1. Разработка модернизированной математической модели Основной идеей, положенной в основу модернизации программы MODMD24, является гипотеза о пропорциональности относи

Краткие сведения о рабочей программе MODMD82 и MODMD82krug
Программы MODMD82 и MODMD82krug предназначены для моделирования аэродинамического взаимодействия набегающего потока с заданными параметрами и МИП, торцевые стенки которого могут изменять в зависимо

3.4. Формирование исходных данных.
Исходные данные для моделирования формируются из данных, содержащихся в рабочем файле, и данных, которые считываются рабочей программой из файла исходных данных. Информация в файле исходны

Modmd82
  program dat(input,output);  label ll; const ks=12; ps=3; ProgID=82; r11=0.600;r12=0.240;s=3;  var a,q,vx,vy,vz,vyz,v,vT,vTm,vTmm,v0,w0,vv,y,y0,teta,xkpr,ksi,vn,ww0

Modmd82krug
  program dat(input,output);  label ll; const ks=12; ps=3; ProgID=82; r21=0.600;r22=0.240;  var a,q,vx,vy,vz,vyz,v,vT,vTm,vTmm,v0,w0,vv,y,y0,teta,xkpr,ksi,vn,ww0,q1:

Графики полученные по результатам программы MODMD82
График 1. Распределение плотности при нахождении потока перед датчиком &n

Графики полученные по результатам программы MODMD82krug
График 5. Распределение плотности при нахождении потока перед датчиком

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги