рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Приборы индукционной системы

Приборы индукционной системы - раздел Приборостроение, АНАЛОГОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ Конструкция И Принцип Действия.Принцип Действия Индукци­онны...

Конструкция и принцип действия.Принцип действия индукци­онных приборов основан на взаимодействии двух или нескольких переменных магнитных потоков с токами, индуцированными в подвижном проводнике (например, диске). Типичным представите­лем этой системы является классический индукционный счетчик – измеритель активной энергии.

Рассмотрим устройство и принцип действия индукционного од­нофазного счетчика активной энергии. На рис. 3.15 показана упро­щенная конструкция такого прибора. Основными элементами при­бора являются два магнитопровода со своими обмотками (напря­жения и токовой), вращающийся диск и счетный механизм. Как и ваттметр, счетчик содержит обмотки тока и напряжения. Включает­ся счетчик в цепь так же, как и ваттметр.

Схема (рис. 3.16) и векторная диаграмма (рис.3.17) поясняют принцип действия этого прибора.

Рассмотрим работу счетчика на примере входных сигналов на­пряжения и тока синусоидальной формы с действующими значе­ниями, равными, соответственно, U и I. Входное напряжение U, приложенное к обмотке напряжения 2, создает в ней ток IU, име­ющий по отношению к напряжению U сдвиг по фазе, близкий к 90° (из-за большого индуктивного сопротивления этой обмотки). Ток IU рождает магнитный поток ФU в среднем сердечнике магни­топровода обмотки напряжения 1. Этот поток ФU делится на два потока: нерабочий поток ФU1, который замыкается внутри магни­топровода 7; и основной поток ФU2, пересекающий диск 6, закреп­ленный на оси 7 и вращающийся вместе с нею. Этот основной поток замыкается через противополюс 5.

Рис.3.15. Упрощенная конструкция индукционного однофазного счетчика

 

 

 

Рис. 3.17. Векторная диаграмма

Входной ток I, текущий в обмот­ке тока 4, создает в магнитопроводе 3 магнитный поток ФI , который дваж­ды пересекает диск 6. Поток ФI от­стает от тока I на небольшой угол потерь αI, (поскольку сопротивление токовой обмотки мало).

Таким образом, диск пересека­ют два магнитных потока ФU2 и ФI, не совпадающих в пространстве и имеющих фазовый сдвиг ψ. При этом в диске возникает вращающий момент М:

M = cf ФU2 ФI sin ψ,

где с – некая константа; f – частота напряжения.

При работе на линейном участке кривой намагничивания мате­риалов магнитопроводов можно считать, что

ФI = k1I; ФU2= k2IU =k2U / ZU,

где k1 и k2 – коэффициенты пропорциональности; ZU – полное комплексное сопротивление обмотки напряжения.

Учитывая, что реактивная (индуктивная) составляющая сопро­тивления обмотки напряжения ZU гораздо больше активной, мож­но записать

ZUf LU ,

где LU – индуктивность обмотки напряжения. Тогда

ФU2= k2U /( fLU) = k3U / f,

где k3 = k2 /(2πLU).

Следовательно, вращающий момент М в данной электромаг­нитной механической системе можно определить следующим об­разом:

М = kUIsinψ,

где k – общий коэффициент пропорциональности.

Для того чтобы вращающий момент был пропорционален теку­щей активной мощности, необходимо выполнение условия

sinψ = cos φ.

А это в свою очередь будет выполняться, если ψ + φ = 90°. Это равенство может быть обеспечено изменением (регулировкой) угла потерь αI. Изменение этого угла реализуется двухступенчато: гру­бо – изменением числа короткозамкнутых витков, надетых на магнитопровод 3, а плавно – изменением сопротивления вспомога­тельной цепи (эти элементы конструкции на рис. 3.15 и 3.16 не показаны).

Таким образом обеспечивается пропорциональность вращаю­щего момента М текущему значению активной мощности. Для по­лучения результата определения потребленной активной энергии достаточно проинтегрировать значения текущей мощности. Это ин­тегрирование реализовано счетным механизмом 9, связанным с осью 7 червячной передачей 8.

Постоянный магнит служит для создания тормозного момента и обеспечения угловой скорости вращения, пропорциональной те­кущему значению активной мощности. Кроме того, в реальной конструкции есть элементы, обеспечивающие дополнительный момент, компенсирующий момент трения, а также элементы уст­ранения «самохода» (на рис. 3.15 и 3.16 не приведены).

Включение счетчика.На рис. 3.18 приведена схема включения однофазного счетчика активной энергии.

При необходимости работы в цепях с напряжениями и/или токами, большими, чем номинальные для конкретного счетчика, используются измерительные трансформаторы напряжения и/или тока. Схема подключения такая же, как и в подобном случае с ваттметроми.

 

Рис. 2.18. Схема включения однофазного счетчика активной энергии

Для измерения реактивной энергии также используются ин­дукционные счетчики. Их принцип действия аналогичен рассмот­ренному. Некоторые различия в конструкции, организации подключения и, как следствие в векторных диаграммах, позволяют получить скорость вращения диска, пропорциональную значению текущей реактивной мощности.

Номинальная постоянная счетчика.Число оборотов диска, при­ходящееся на единицу учитываемой счетчиком энергии, называ­ют передаточным числом счетчика. Например, в паспорте сказано «2000 оборотов соответствуют 1 кВт · ч». Коэффициент, обратный передаточному числу, т.е. энергия, приходящаяся на один оборот диска, называется номинальной постоянной счетчика Сном. Напри­мер:

 

Сном=3600 · 1000/2000 = 1800 Вт·с /об.

 

Зная Сном и число оборотов N, можно определить потребленную активную энергию:

W = СномN.

Пример.Значение номинальной постоянной счетчика известно Сном = 1800 Вт·с/об. За время наблюдения зафиксировано 400 обо­ротов диска (N = 400 об). Определим значение активной энергии W, потребленной за время наблюдения:

W= 1800 · 400 = 720 000 Вт · с = 0,2 кВт · ч.

Классы точности индукционных счетчиков (задаются относительной погрешностью) обычно невысоки: 0,5; 1,0; 1,5; 2,0; 2,5; 4,0.

Обозначение индукционной системы на шкалах приборов:

Трехфазные счетчики.Для учета суммарной активной и реактивной энергии в трехфазных цепях исполь­зуются двухэлементные и трехэлемен­тные счетчики. В таких счетчиках при­меняются те же конструктивные эле­менты (два или три механизма), что и в однофазных приборах. Диски (два или три) закреплены на общей оси. Вращающие моменты дисков склады­ваются, и скорость вращения оси за­висит от суммарной текущей потреб­ляемой мощности. На рис. 3.19 упро­щенно показано устройство двухэле­ментного трехфазного счетчика.

Рис. 2.19. Двухэлементный трех­фазный счетчик

 

Скорость вращения в данном случае определяется суммой моментов М1 и М2. Включаются трехфазные счетчики так же, как и трехфаз­ные ваттметры.

Сегодня в задачах измерения активной энергии все шире при­меняются цифровые (микропроцессорные) счетчики энергии. В за­дачах технических экспресс-измерений для оценки потребленной энергии в кратковременных экспериментах используют автоном­ные малогабаритные цифровые измерительные регистраторы (анализаторы), которые имеют режим вычисления активной и реак­тивной энергии или позволяют найти эти величины с помощью компьютера и специализированного программного обеспечения.

– Конец работы –

Эта тема принадлежит разделу:

АНАЛОГОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

На сайте allrefs.net читайте: АНАЛОГОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Приборы индукционной системы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОБЩИЕ СВЕДЕНИЯ
Измерительный прибор (ИП) – наиболее распространенный вид средств измерений. Все ИП можно поделить на две большие груп­пы: аналоговые и цифровые. Аналоговые измерительные приборы

ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
Большинство используемых сегодня в технологических процес­сах стационарных измерительных приборов – это классические аналоговые электромеханические приборы. Их метрологические и эксплуатационные ха

Приборы магнитоэлектрической системы
Одной из самых простых (и исторически, пожалуй, самых ран­них) систем, используемых при построении электромеханических приборов является магнитоэлектрическая (МЭ). Конструкция и пр

Приборы выпрямительной системы
Из выражения для вращающего момента М следует, что при­боры МЭ системы непосредственно могут быть использованы толь­ко для работы с постоянными напряжениями и токами, а для рабо­ты в цепях п

Приборы термоэлектрической системы
Термоэлектрические (ТЭ) измерительные приборы основаны на преобразовании электрической энергии в тепловую и затем вновь в электрическую. Приборы этой системы состоят из термоэлектри­ческого преобра

Приборы электродинамической системы
Конструкция и принцип действия.На рис. 3.9 приведена упро­щенная конструкция электродинамического (ЭД) измерительно­го механизма. Неподвижная катушка 1 с током I1

Электростатические вольтметры
Электростатические (ЭС) вольтметры применяются в основ­ном для измерения напряжений в высоковольтных цепях как по­стоянного, так и переменного тока. Конструкция и принцип действия.

ЭЛЕКТРОННЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
Электронные ИП (ЭИП) представляют собой более сложные устройства, чем электромеханические. Они содержат несколько различных преобразователей, которые в общем случае выполняют функции деления, усиле

Электронные вольтметры переменного напряжения
Электронные вольтметры переменного напряжения строятся по одной из двух структурных схем, приведенных на рис. 3.20. Измеряемое переменное напряжение U~ поступает на вход вольт­мет

Выпрямители (детекторы)
Одним из основных элементов электронного вольтметра пере­менного напряжения является выпрямитель (детектор) – преобра­зователь переменного напряжения в постоянное. Именно особенно­сти детектора в з

Особенности электронных измерительных приборов
Основными достоинствами электронных измерительных при­боров (ЭИП), по сравнению с электромеханическими, являются следующие: • малая мощность потребления от исследуемой цепи (источни­ка сиг

ВЛИЯНИЕ ФОРМЫ СИГНАЛА НА ПОКАЗАНИЯ ПРИБОРОВ
При работе с периодическими сигналами важно знать особен­ности устройства и градуировки того или иного типа измерительного прибора. Как правило, приборы градуируются в средних квадратических (дейст

Сигнал без постоянной составляющей
Предположим, к источнику прямоугольного напряжения u(t) амплитудой ±100 В, частотой 50 Гц и скважностью 2 (рис. 3.28, а) подключены параллельно два вольтметра (рис. 3.28

Сигнал - сумма переменной и постоянной составляющих
Разберем несколько более сложный случай сигнала - однополярного периодического сигнала прямоугольной формы с ампли­тудой Umax = +100 В, длительностью импульса 10 мс, длител

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги