рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математическое моделирование в управлении производственным риском

Математическое моделирование в управлении производственным риском - раздел Производство, ЛЕКЦИЯ 1. ПРОИЗВОДСТВЕННЫЙ РИСК Математическое Моделирование В Настоящее Время Широко Используется В Практике...

Математическое моделирование в настоящее время широко используется в практике оценки риска.

При построении моделей по В.М. Минько последовательно выполняются следующие этапы.

1. Определение цели (критериев эффективности) или целей.

2. Словесное описание рассматриваемого объекта или процесса, т.е. построение содержательной или вербальной модели.

3. Построение математической модели, т.е перевод содержательной (вербальной) модели в математическую форму, достижение которой позволяет использовать тот или иной математический аппарат.

4. Выбор метода исследования полученной математической модели.

5. Проведение исследования, т.е. решение конкретных задач, которые сформулированы на основе построенной модели.

6. Сопоставление полученных теоретических результатов с реально возможными на практике.

7. Внедрение полученных решений.

В области охраны труда реальными объектами исследования через построение математических моделей могут быть:

1. Процессы управления повышением безопасности производственной среды.

2. Технические системы, изучаемые с целью прогнозирования риска и установления путей его определения.

3. Негативная способность производственной среды и трудового процесса, выражающаяся через конкретные значения формирующих ее факторов: шум, вибрация, излучения, загазованность, тяжесть труда, напряженность труда и др.

4. Технологические процессы, рассматриваемые как источники вредных и опасных воздействий.

5. Системы индивидуальной и коллективной защиты на производстве.

Математическое моделирование в области безопасности труда основывается на знании зависимостей между частотой или вероятностью заболеваний и состоянием условий труда по конкретным факторам, наличии данных о числе несчастных случаев на каждой операции изучаемого технологического процесса, установлении и учете зависимостей между уровнями производственных факторов и техническими характеристиками изучаемой технической системы.

Математическая модель должна быть продуктивной, т. е. обязательно давать ответы на реальные вопросы, возникающие, например, в практике управления безопасностью труда.

Удобно строить математические модели, когда управляемые переменные связаны с ее параметрами через линейные зависимости или когда нелинейные зависимости можно заменить на приближенные к линейным.

Математические модели принято называть вероятностными или стохастическими, когда в них включены случайные величины или функции. Когда случайные величины и функции отсутствуют, то математическую модель называют детерминированной. Решение задач, определяемых вероятностными или стохастическими моделями, значительно сложнее, поэтому в практике такие модели стараются заменить их детерминированными эквивалентами.

Сложность построения математических моделей управления производственным риском определяется выбором промежутка времени, для которого строится модель, неопределенностью многофакторного воздействия на работающих вредных и опасных факторов производственной среды и трудового процесса, влияния на организм человека отклонений от норм факторов различной природы (химических, физических, биологических, психофизиологических), невозможность в учете риска воздействия всех возможных факторов в силу того, что они не определены в формировании нормативов. Последнее обстоятельство приводит к огрублению модели. Но если ставится задача определения общих закономерностей возникновения риска заболеваний в зависимости от факторов производственной среды и трудового процесса, упрощение может быть оправданным.

На базе полученной математической модели можно решать задачи снижения профессионального риска, включая выбор оптимальных путей его снижения.

В практике изучения влияния факторов производственной среды и трудового процесса на человека используются психофизические методы, связывающие зависимость между величиной действующего на организм стимула (раздражителя) и возникающего в организме ощущения.

Психофизика рассматривает проблемы построения сенсорных шкал, используемых для оценки вышепороговых ощущений с использованием логарифмической функции - закон Вебера-Фехнера, либо степенной функции - закон С. Стивенса.

В.М. Минько разработал системы построения психофизических шкал для обоснования соотношения между баллами риска xi и конкретными значениями параметров различных факторов производственной среды и трудового процесса.

Принимая во внимание то обстоятельство, что закон Вебера-Фехнера действует для раздражителей средней интенсивности, В.М. Минько в своих расчетах пользовался законом С. Стивенса.

В.М. Минько соединил балльные оценки воздействия условий труда, предложенных НИИ труда еще в 80-х годах прошлого столетия, с современными оценками условий труда, которые определяются Гигиеническим руководством Р.2.2.755-99, которое в ноябре 2005 г. было заменено Гигиеническим руководством Р.2.2.2006-05 (соответствующие данные представлены в первой главе).

Балл хi = 2 соответствует ПДК или ПДУ различных производственных факторов. Введенные в Руководстве Р.2.2.2006-05 классы условий труда (3.1, 3.2, 3.3, 3.4) условно переведены в баллы риска по схеме: 3.1 - 3 балла, 3.2 -4 балла, 3.3 - 5 баллов, 3.4 - 6 баллов.

Закон С. Стивенса имеет вид

х = К·Sn (2.2.1)

где х - балл риска; К - константа, зависящая от единиц измерения; S - величина стимула (или раздражения); n - психофизический показатель степени, измеряющийся для разных раздражителей от 0,2 до 3,5.

Из выражения (2.2.1) следует

(2.2.2)

тогда

(2.2.3)

Для получения константы К необходимо использовать введенные определения, если S = Sпду, то х = х0 = 2 (с использованием шестибальной классификации). Поэтому из формулы (3.2) находим

(2.2.4)

Подставляя выражение (2.2.4) в формулу (2.2.3), получаем

(2.2.5)

или

(2.2.6)

относительно балльных оценок х получим

(2.2.7)

Заменяя S и Sпду. на соответствующие нормируемые величины факторов, В.М. Минько приводит сводку зависимостей для определения балльных оценок факторов производственной среды и трудового процесса (табл. 2.1)

Таблица 2.1

Сводка зависимостей для определения балльных оценок факторов производственной среды и тяжести трудового процесса

Наименование фактора Единица измерения Расчетная психофизическая формула Значение психофизического показателя, n
Шум дБА 0,3
Разовая максимальная масса переметаемых вручную грузов кг 1,45
Общая динамическая физическая нагрузка за смену Кдж 1,45
Статическая физическая нагрузка в течение смены Не 1,45
Вредные химические вещества мг/м 0,55-для химических веществ 3-го и 4-го классов опасности
Температура воздуха в холодный период года при работах на открытом воздухе °С
Температура воздуха в теплый период года при работах на открытом воздухе °С 1,6
Воздействие холодной воды °К 1,2
Освещение рабочих мест лк 1,2
Площадь рабочего места м2 1,15
Величина токов прикосновения мА 3,5
Технологическая вибрация дБ 0,77

Принимая, что все факторы производственной среды действуют независимо друг от друга (принцип аддитивности), для оценки обобщенного уровня риска будем иметь

(2.2.8)

где - уровень безопасности по i-му фактору производственной среды, который может быть определен по формуле

(2.2.9)

где хmax - максимальная балльная оценка, принимается в соответствии с методикой НИИ труда хmax = 6; хi - балльная оценка по i-му фактору среды, определяемая по формулам в табл. 3.1, n - число учитываемых факторов среды.

Важно отметить, что величина

(2.2.10)

определяет обобщенный уровень безопасности производственной среды, отнесенный к трудовому стажу.

Опыт показывает, что вероятность заболеваний в промежуток времени t, не зависит от того, были ли заболевания в предыдущем периоде t, что указывает на независимость событий. Тогда вероятность работы без заболеваний (уровень безопасности производственной среды) в течение t лет может быть определена по формуле

(2.2.11)

где rr - годовой профессиональный риск.

Из формулы (3.25) с учетом выражения (3.24) получаем

(2.2.12)

где m - 25 лет - трудовой стаж.

Результаты расчетов по формуле (2.2.12) должны быть близки к данным, получаемым по фактическим показателям заболеваемости. Конечно, это возможно только при организации объективного учета заболеваемости и правильном определении состояния производственной среды.

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ 1. ПРОИЗВОДСТВЕННЫЙ РИСК

Классификация источников и уровней риска смерти человека... Современное состояние риска смерти человека представлено в табл... Таблица...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математическое моделирование в управлении производственным риском

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие риска
Специалисты различных отраслей промышленности в своих сообщениях и докладах постоянно оперируют не только определением "опасность", но и таким термином, как "риск". В н

Приемлемый риск как уровень безопасности производства
Приемлемый риск - это такой риск, который в данной ситуации (при данных обстоятельствах, при данном уровне развития науки и технологий) допустим при существующих общественных ценно

Количественные показатели производственного риска
Практический опыт в области управления охраной труда позволил выработать ряд специальных оценочных показателей производственного риска. Они могут рассматриваться как объективные количественные хара

КОНЦЕПЦИИ И МЕТОДЫ АНАЛИЗА РИСКА
Анализ риска - это систематическое использование информации для определения источников (опасностей) и количественной оценки риска. Анализ риска обеспечивает базу для оценивания риска, для последующ

МАТЕМАТИЧЕСКИЙ АППАРАТ АНАЛИЗА РИСКА В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ
Математический аппарат анализа риска базируется на теории вероятностей, статистическом анализе, алгебре логики и событий, системном анализе. 2.2.1. Основные понятия теории вероятно

Моделирование риска несчастных случаев
При моделировании риска несчастных случаев на производстве выделяются два направления. Первое направление. При моделировании риска несчастных случаев практически важно его выражение через

УПРАВЛЕНИЕ ОХРАНОЙ ТРУДА НА ПРОИЗВОДСТВЕ
По данным Международной организации труда*1 (МОТ), ежегодно по причинам, связанным с трудовой деятельностью, погибает около двух миллионов человек. При всей своей чудовищной величине, са

ОСНОВНЫЕ ЭЛЕМЕНТЫ СИСТЕМЫ УПРАВЛЕНИЯ ОХРАНОЙ ТРУДА
Перед разработкой системы управления охраной труда любой конкретной организации (компании, фирмы или проекта) целесообразно: оценить возможность интеграции системы управления охраной труда в общую

ИНФОРМАЦИЯ В УПРАВЛЕНИИ ОХРАНОЙ ТРУДА
Как и любой процесс управления, управление охраной труда невозможно без четкой системы сбора и обработки информации. Реализация всех задач управления охраной труда, выработка и применение управленч

Риски в инвестиционном проекте
Инвестиционные проекты можно классифицировать по трем основным типам. Первый тип подразделяется в соответствии с назначением проекта, где можно выделить следующие его разновидности: технич

Управление риском и безопасностью городской среды
Интенсивное развитие городов и превращение их в сложнейшие инженерные, технические, технологические, информационные, коммуникационные, экологические, энергетические, политические и транспортные сис

Общие положения
Изыскания строительной площадки и размещения зданий и сооружений должны быть направлены на рациональное решение инженерных задач и повышение безопасности проектируемого объекта, с учетом особенност

Основы надежности и ремонтируемости объектов строительства
В технике отсутствуют абсолютно надежные изделия и объекты. Вопросами возникновения отказов и способами снижения их числа занимается раздел научного направления "Теория надежности".

Экологическая безопасность в районах строительства
Под экологическим загрязнением следует понимать не только прямое и непосредственное введение сторонних веществ в окружающую среду, но и косвенное нарушение экологической целостности природного ланд

Скотомогильники и мусорные свалки
При выборе земельного участка для строительства зданий или сооружений следует тщательно проверять санитарное состояние территории строительства и прилегающих участков. Дымящиеся свалки, му

Трубопроводные системы газа, нефти и нефтепродуктов
В настоящее время эксплуатируются, а также проектируются и строятся новые трубопроводные системы государственного, межгосударственного, континентального и даже межконтинентального значения для тран

Условия безопасности при разработке объемно-планировочных и конструктивных решений строительного объекта
Задача инженеров и архитекторов - проектировать и создавать строительную инфраструктуру так, чтобы свести к минимуму все ожидаемые потери. Спроектированные здания и сооружения должны быть построены

Оценка ущерба и потерь в проектном решении
Ущерб и потери, вызываемые различными техногенными причинами и природными явлениями, с учетом конкретных производственных потребностей определяют для следующих основных случаев: 1.

Инженерные мероприятия для повышения уровня надежности
Главным требованием надежности строительного объекта должно быть обеспечение прочности грунтовой среды и фундаментов, что должно характеризоваться малыми осадками построенного сооружения за расчетн

Качество строительства в обеспечении надежности и безопасности
Надежность строительного объекта зависит от качества исполнения строительно-монтажных работ, условий его эксплуатации и своевременного выполнения профилактических и ремонтных работ. Качест

Условия эксплуатации и безопасность строительного объекта
В зданиях и сооружениях должна обеспечиваться комплексная техническая поддержка строительного объекта на протяжении всего его жизненного цикла. Для контроля над качеством предоставляемых эксплуатац

Прогнозирование аварийных ситуаций
Анализ экстремальных ситуаций в строительной практике показал, что аварии прямо или косвенно связаны с нарушением требований норм и правил проектирования и технологии строительства зданий и сооруже

Оценка риска в условиях прогноза ЧС
Исследование причин аварий послужило основанием для оценки возможности возникновения условий, влияющих на надежность сооружения. К числу этих условий относятся надежность проектных решений, качеств

Определение ожидаемого ущерба и дестабилизирующих факторов
Ожидаемый ущерб от природных и техногенных воздействий зависит от двух основных дестабилизирующих факторов: - интенсивность и частота природных и техногенных воздействий на здания и сооруж

Разработка мероприятий по повышению надежности строительных объектов и жизнедеятельности населения
Для обеспечения надежности строительных объектов должны быть определены прочностные характеристики зданий и сооружений и выполнены сопоставления их со всеми видами нагрузок и воздействий, которые м

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги