рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дефекты при проведении процесса контактной фотолитографии

Дефекты при проведении процесса контактной фотолитографии - оптическая контактная литография Дефекты При Проведении Процесса Контактной Фотолитографии. Практически Разреш...

Дефекты при проведении процесса контактной фотолитографии. Практически разрешающая способность процесса контактной фотолитографии 1,5-2 мкм является предельно достижимой и хуже, чем дают теоретические оценки на уровне 1 мкм. Это вызвано целым рядом явлений, сопровождающих литографический процесс и снижающих его разрешающую способность.

Основными дефектами контактной фотолитографии, в частности, являются наличие проколов в плёнке фоторезиста, неоднородность толщины плёнки фоторезиста, образование клина травления, неровность края проявленной плёнки фоторезиста, изменение геометрических размеров и наличие ореола по краю изображения.

Появление проколов в плёнке фоторезиста связано с некачественным или изношенным фотошаблоном, различного рода загрязнениями, плохой смачиваемостью поверхности пластины или перегревом плёнки фоторезиста при экспонировании. Как правило, при травлении проколы переходят в окисный защитный слой и являются паразитными областями локальной диффузии примесей, что может привести к закорачиванию р-n переходов.

Неоднородность по толщине плёнки фоторезиста приводит к несплошности контакта с фотошаблоном и трудности в подборе времени экспонирования. Наиболее часто встречающийся дефект - образование клина травления. Клин травления возникает при вскрытии окон в защитном слое окисла и влияет на размер диффузионной области рис. 3. Рис. 3. Схематическое изображение клина травления в защитном слое SiO2. При наличии клина размеры диффузионной области дополнительно увеличиваются и могут быть определены из следующего выражения dдиффуз dокна 2ЧhдиффузЧ 1 k 10L , где hдиффуз - глубина диффузии.

При толщине окисла 0,7-0,8 мкм k 1-2 мкм для негативных фоторезистов и 0,3-0,4 мкм для позитивных. Причины появления клина связаны с неправильно подобранной экспозицией, плохим контактом между пластиной и фотошаблоном, недостаточной оптической плотностью непрозрачных участков фотошаблона, неперпендикулярным падением света на фотошаблон, некачественным проявлением фоторезиста.

Дефекты, связанные с неровностью края плёнки фоторезиста появляются при неправильных режимах проявления и экспозиции, при наличии в фоторезисте инородных частиц размером 0,3-0,5 мкм, при некачественных фотошаблонах. Минимальный геометрический размер элемента зависит от длины волны излучения л, расстояния между фотошаблоном и пластиной z и толщины фоторезиста h, которые связаны между собой соотношением bmin 3 2Ч лЧ z h 2 1 2. Поэтому при плохом контакте пластины и фотошаблона, т.е. при зазоре, возникает дифракция, которая и искажает размеры экспонируемой области.

К искажению геометрических размеров рисунка могут привести также неправильно подобранные режимы экспонирования и проявления. Интерференция проходящего через слой фоторезиста светового потока и его отражения от границы с подложкой, а также рассеяние света, создают нерезкую зону по краю изображения, которая после проявления даёт ореол, что ухудшает контрастность и изменяет геометрические размеры рисунка.

Для ослабления этого эффекта применяют антиотражающие покрытия, например, плёнки окиси хрома, которые осаждают на поверхность пластины перед нанесением фоторезиста. В итоге контактная фотолитография при решении задачи повышения разрешающей способности и достижения предельной точности сталкивается с существенными ограничениями - неизбежность механических повреждений фотошаблона и подложки при контакте - вдавливание пылинок в фоторезист и прилипание его к шаблону при контакте - любые непрозрачные для УФ - излучения частицы между пластиной и фотошаблоном являются причинами появления дефектов - поскольку плотный контакт между пластиной и фотошаблоном невозможен, воздушные зазоры приводят к появлению дифракционных эффектов и увеличению размеров изображения - точность совмещения при контактной фотолитографии существенно снижается из-за проблем фиксации перехода от положения зазор в положение контакт. Бесконтактная фотолитография. Бесконтактная фотолитография реализуется в двух способах фотолитография на микрозазоре и проекционная фотолитография.

Фотолитография на микрозазоре фотошаблон и пластина с нанесённым фоторезистом отстоят друг от друга на расстоянии 10-30 мкм использует так называемый множественный источник излучения, когда УФ - лучи падают наклонно под одинаковыми углами к оптической оси системы экспонирования.

Наклон лучей устраняет или сводит к минимуму дифракционные явления за прозрачными участками фотошаблона, улучшает равномерность облучения.

В результате достигается высокая разрешающая способность, например, при толщине плёнки фоторезиста 1,8 мкм можно получить линейный размер 2 мкм при зазоре 10 мкм и менее 3,5 мкм при зазоре 30 мкм. Бесконтактная система экспонирования позволяет снизить время экспонирования до 2-3 с, увеличить срок службы фотошаблонов. Проекционная фотолитография позволяет проецировать изображение фотошаблона на подложку и осуществлять совмещение при наблюдении рисунка фотошаблона и пластины в одной плоскости.

Это исключает проблему глубины резкости и точной установки зазора между пластиной и фотошаблоном. При проекционной фотолитографии уменьшается длительность процесса совмещения и увеличивается точность совмещения. Разрешающая способность проекционной фотолитографии выше, так как исключается дифракция излучения в зазоре. Метод хорошо поддаётся автоматизации. Рентгеновская литография. Основу метода рентгеновской литографии составляет взаимодействие рентгеновского излучения с рентгенорезистами, приводящее к изменению их свойств в сторону уменьшения или увеличения стойкости к проявителям.

Рентгеновское излучение получают путём бомбардировки мишени потоком ускоренных электронов. Рентгеновское излучение бывает белое, как результат взаимодействия потока электронов с электронами внешних оболочек атомов материала мишени, и характеристическое взаимодействие пучка электронов с внутренними оболочками атома и переход их на внешние или удаление из атома.

Эти переходы сопровождаются рентгеновским излучением. Так как кинетическая энергия электронов внутренних оболочек атомов мишени существенно больше внешних, то длина волны характеристического излучения много меньше белого. Для рентгеновской литографии используют рентгеновское излучение с длиной волны 0,4-0,8 нм, например, PdLa л 0,437 нм , MoLa л 0,541 нм , AlKa л 0,834 нм. Рентгенорезисты, также как и Фоторезисты, делятся на позитивные и негативные. Под действием рентгеновского излучения первые разрушаются, а вторые сшивают свои молекулярные структуры. Рентгеновское излучение выбивает электроны с внутренних оболочек атомов рентгенорезиста, и освободившиеся электроны взаимодействуют с полимерной основой рентгенорезиста.

Позитивные и негативные Рентгенорезисты имеют одинаковую разрешающую способность. Основные требования к рентгенорезистам - это чувствительность к излучению, контрастность, высокая разрешающая способность, устойчивость при травлении. Высокой стабильностью и стойкостью к воздействию кислот обладает позитивный рентгенорезист на основе полиметилметакрилата, который и получил наибольшее применение.

В качестве шаблонов в рентгеновской литографии используют тонкие кремниевые структуры, прозрачные для рентгеновского излучения, с рисунком покрытия из тяжёлых металлов, например, золота, которое не пропускает рентгеновские лучи. На рис. 4 представлена упрощённая схема установки рентгеновской литографии. Порядок технологических операций рентгеновской литографии тот же, что и в оптической литографии. Рентгенорезист также наносят методом центрифугирования, однако толщина его меньше, чем фоторезиста, и составляет 0,1-0,5 мкм. Проецируют изображение фотошаблона на пластину с зазором 3-10 мкм. Рис. 4 Схема установки для рентгеновской литографии.

Проявляют рентгенорезист в смеси, содержащей 40 метизобутилового кетона и 60 изопропилового спирта. Основным преимуществом рентгеновской литографии является высокая разрешающая способность. Дифракционные эффекты, препятствующие использованию видимого и даже коротковолнового УФ - света, не являются помехой для рентгеновских лучей, длина волны которых менее 1 нм. Системы рентгеновской литографии работают почти также, как и системы оптической литографии.

Однако существенным недостатком являются их малая производительность, высокая стоимость и невысокая чувствительность рентгенорезиста. Для компенсации последнего необходимо получение рентгеновских лучей с высокой энергией.

Проблемой является также большая 1000 об мин скорость вращения мишени - массивного металлического диска, на кромку которого нанесён материал мишени. Высокие скорости вращения диска необходимы для охлаждения материала мишени, однако из-за возникающей вибрации в конструкции системы, снижается точность совмещения рисунка ИМС. Электронно-лучевая литография. Электронно-лучевым методом можно легко получать линии шириной 0,25 мкм. Возможности электронно-лучевых систем очень высоки точность совмещения 0,03 мкм, минимальный размер - 1 мкм. В отличие от других методов литографии электронно-лучевой метод не требует масок или шаблонов, позволяет быстро перестраивать производство без существенных капитальных затрат, так как не надо изготавливать фотошаблоны, а изменения в топологию ИМС можно вносить путём изменения программы управления от ЭВМ. Электронно-лучевой метод содержит меньшее число технологических операций, что снижает трудоёмкость процесса в целом, однако, трудоёмкость некоторых операций высока.

На пример, время, затрачиваемое на экспонирование одной пластины 100 мм диаметром, составляет порядка10-15 мин. Электронно-лучевое экспонирование выполняется в вакуумных установках и основано на нетермическом взаимодействии ускоренных электронов с электронорезистом.

В качестве последнего применяют различные полимерные материалы, в том числе и Фоторезисты. Предпочтение отдаётся специальным электронорезистам, нечувствительным к видимому и УФ - излучениям. Электронорезист также должен иметь низкое давление собственных паров и не должен образовывать химических соединений, загрязняющих вакуумную камеру установки.

Электронорезисты подразделяют на позитивные и негативные в зависимости от того разрывает поток падающих электронов химические связи в их структуре или, наоборот, укрепляет структурирует молекулы электронорезиста. В каждом конкретном полимере преобладает тот или другой эффект. Степень структурирования и деструкции позитивных элетронорезистов прямо пропорциональна дозе облучения, т.е. величине заряда электронов на единицу площади.

Структурные изменения в электронорезисте произойдут полностью, если длина свободного пробега электронов будет больше толщины слоя электронорезиста. Установки электронно-лучевой литографии обеспечивают ускоряющее напряжение порядка 104В, что соответствует длине волны 50-100 нм. Чем больше ускоряющее напряжение, тем меньше длина волны и меньше минимальный размер элемента. Технически считается возможным получение потока электронов с длиной волны менее 0,1 нм, т.е. возможна разрешающая способность, близкая к 10-4 мкм. Используют два метода электронно-лучевой литографии сканирующую и проекционную литографию.

Сканирующая электронно-лучевая литография - это обработка сфокусированным единичным пучком поверхности пластины, покрытой электронорезистом. Для экспонирования в этом случае применяют растровые электронные микроскопы РЭМ или электронно-лучевые ускорители ЭЛУ . РЭМ позволяет получать линии рисунка шириной 0,1 мкм. При управлении лучом от ЭВМ применяют векторное сканирование.

В этом случае электронный луч сканирует только запрограммированный участок, выключаясь в местах перехода от одного элемента к другому. Для увеличения площади экспонирования наряду с перемещением луча осуществляют управляемое от ЭВМ перемещение столика, на котором расположена пластина с электронорезистом. Совмещение топологических слоёв ИМС выполняется автоматически с помощью реперных меток, отражаясь от которых с отклонением, электронный луч даёт сигнал ЭВМ о несовмещении, в результате ЭВМ изменяет положение пучка. Точность совмещения составляет 0,5 мкм. Проекционная электронно-лучевая литография - это электронная проекция всего изображения, в результате которой на электронорезист передаётся одновременно весь рисунок фотошаблона.

В качестве последнего используют трёхслойный катод, который выполняет роль шаблона и одновременно является источником электронов. Рисунок шаблона в масштабе М 1 1 выполняют на слое диоксида титана, который непрозрачен для УФ - излучения.

Поверх рисунка наносят плёнку палладия, обладающую высокими фотоэмиссионными свойствами. Фотокатод со стороны основы, выполненной из кварца, облучают УФ - излучением. Участки поверхности, покрытые плёнкой палладия, под действием УФ - излучения эмитируют электроны, которые ускоряясь в электрическом поле с помощью фокусирующей системы, проецируют изображение без искажения. Отклоняющая система установки позволяет смещать изображение и, тем самым, проводить совмещение с точностью 0,25 мкм. Проекционный метод имеет хорошее разрешение, позволяющее получать линии шириной 1 мкм, большую до 50 мкм глубину резкости.

Производительность метода сравнима с фотолитографией. К недостаткам метода можно отнести сложность изготовления фотокатодов и сложность подсоединения детекторов для совмещения.

– Конец работы –

Эта тема принадлежит разделу:

оптическая контактная литография

При любом типе печати ухудшается резкость края рис. 1 . Проецирование двумерного рисунка схемы ведет к уменьшению крутизны края, поэтому нужен… Таким образом, задача фотолитографии заключается в том, чтобы обеспечить… Послойное совмещение приборных структур должно осуществляться с точностью не хуже 25 от размера минимального…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дефекты при проведении процесса контактной фотолитографии

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Описание технологического процесса
Описание технологического процесса. Уважаемый преподаватель курсовая скачена из интернета и студентом даже не прочитана Процесс контактной фотолитографии состоит из ряда пунктов представленных на р

Выбор и описание технологического оборудования
Выбор и описание технологического оборудования. Уважаемый преподаватель курсовая скачена из интернета и студентом даже не прочитана Внешний вид установки отмывки и сушки OSTEC ADT 976 представлен н

Оценка технологического процесса
Оценка технологического процесса. Уважаемый преподаватель курсовая скачена из интернета и студентом даже не прочитана Основными контролируемыми параметрами являются геометрические размеры, топологи

Ведомость технологической документации
Ведомость технологической документации. МГОУ 605124 605124 ВО 0 С НПП Обозначение ДСЕ Наименование ДСЕ кл В Цех уч. РМ Опер. Код, наименование операции Т опер. Обозначение ТО Кол Наименование ТО Д

Карта операционного контроля
Карта операционного контроля. МГОУ 605124 605124 ОКУ В Цех УЧ. РМ Опер. Код, наименование операции Г Обозначение документа Д Код, наименование оборудования Т Код, наименование технологической оснас

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги