рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Синтетического каучука

Синтетического каучука - раздел Философия, АВТОМАТИЗАЦИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ   5.4.1. Автоматизация Производства Бутадиен-Стирольного Каучук...

 

5.4.1. Автоматизация производства бутадиен-стирольного каучука

5.4.1.1. Технологическая схема производства. Бутадиен-концентрат, стирол-ректификат и стирол-дистиллят, непрерывно подаваемые из емкостей 1, 2 и 3, смешиваются в трубопроводе (рис. 5.22.). Полученная углеводородная фаза охлаждается в теплообменнике 4 и поступает в смеситель фаз 5. Водная фаза, предвари­тельно охлажденная в холодильнике 6, также поступает в смеситель фаз 5. Образующаяся в смесителе эмульсия подается в полимеризатор 7—первый аппарат полимеризационной батареи, состоящей из 12 последовательно включенных полимеризаторов 7 - 18.

Процесс полимеризации осуществляется в эмульсии в присутствии компо­нентов окислительно-восстановительной системы и модификатора молекуляр­ной массы при перемешивании и пониженных температурах (4 - 8°С). Для прекращения процесса вводится прерыватель полимеризации в смеситель 19.

Полученный в результате полимеризации латекс содержит незаполимери- зовавшиеся мономеры (бутадиен и стирол), содержание которых позволяет

судить о конверсии мономеров. Для выделения незаполимеризовавшихся мономеров проводят дегазацию. В колонне 20 происходит удаление основной мас­сы незаполимеризовавшегося бутадиена за счет подачи водяного пара, увлаж­ненного умягченной водой, под небольшим избыточным давлением.

Пары воды и углеводородов поступают из колонны 20 в отбойник 21, где отделяются унесенные капли латекса (для предотвращения забивки конденса­торов в линию паров после отбойника подается ингибитор). Отделенный бута­диен после конденсатора 22 направляется на компримирование и последующую очистку, а конденсат - стиролъная вода - подается на переработку.

Латекс из колонны предварительной дегазации 20 направляется в вакуум­ную колонну 23, предназначенную для удаления незаполимеризовавшегося бутадиена до остаточного его содержания не более 0,2%. В колонну 23 подается также водяной пар, увлажненный умягченной водой. Пары воды и углеводородов поступаютизколонны 23 в отбойник 24 (в линию паров после отбойника также подается ингибитор) и далее в конденсатор 25. Кон­денсат — стирольная вода — подается на переработку. Частично дегазирован­ный латекс с остаточным содержанием бутадиена не более 0,2% (масс.) для предотвращения вспенивания подают в противоточную колонну 26, работаю­щую под глубоким вакуумом, создаваемым пароэжекционной установкой.

В линию латекса перед колонной предварительной дегазации 20 и проти-воточной колонной 26 подается эмульсия пеногасителя. Отгонка стирола из латекса в колонне 26 производится с помощью увлажненного водяного пара, подаваемого противотоком потоку латекса.

В дегазированный латекс вводят антиоксидант и направляют его в цех выделения каучука. Пары воды и углеводородов поступают в конденсатор 27. Конденсат - стирольная вода - направляется на совместную переработку с кон­денсатом из аппаратов 22 и 25.

Дегазированный латекс усредняется и анализируется в емкости 28 цеха выделения каучука и через фильтр 29 подается на коагуляцию. Предваритель­но латекс в смесителе 30 смешивается с нефтяным пластификатором.

Коагуляцию латекса проводят электролитом — водным раствором поваренной соли и разбавленным раствором поваренной соли с рециклом серума. Вместо электролита может быть использована другая коагулирующая добавка. Раствор коагулянта смешивается с латексом в смесителе 31. Полученный в аппарате 31 флокулят направляется в аппарат коагуляции 32, куда подается также циркулирующий серум, подкисленный разбавленной серной кислотой. Пульпа каучука из верхней части коагуляционного аппарата 32 перетекает в дозреватель 33. Отсюда пульпа направляется в концентратор 34. Серум после концентратора 34 поступает в сборник 35, откуда возвращается на коагу­ляцию в аппараты 31 и 32.

Крошка каучука из концентратора 34 поступает в промывную емкость 36. Из емкости пульпа направляется в концентратор 37, а оттуда - в отжимную машину (экспеллер) 38. Вода из промывной машины и экспеллера сбрасывает­ся в канализацию. После экспеллера каучук поступает в молотковую дробил­ку 39, откуда пневмотранспортером 40 подается в сушилку 41. Сушка крошки каучука осуществляется в многосекционной воздушной конвейерной сушилке. В процессе сушки каучука циркуляционные вентиляторы осуществляют посто­янный рецикл горячего воздуха через калориферы. При этом производится подпитка циркуляционного горячего воздуха свежим, подаваемым из помеще­ния цеха через специальные окна в сушилке. Отработанный воздух из сушилки вытяжными вентиляторами подается в атмосферу или в печи для каталитиче­ского окисления примесей углеводородов. Высушенная крошка системой транс­портеров 42 подается на брикетировочный пресс 43 и далее в оберточную ма­шину 44. Брикеты каучука, обернутые в полиэтиленовую пленку, поступают в машину 45 для упаковки в бумажные мешки и транспортером передаются на склад.

 

5.4.1.2. Автоматизация процессов приготовления эмульсии и полимеризации .

Критерием управления процессом полимеризации яв­ляется степень конверсии мономеров. Постоянства этого пара­метра является одним из важнейших условий стабильности свойств полимеров. Выполнение этого условия является целью управления процессом полимеризации.

Конверсия определяется чистотой мономеров, составами угле­водородной и водной фаз, расходами инициатора, модификатора (регулятора) молекулярной массы, соотношением расходов уг­леводородной и водной фаз, продолжительностью полимери­зации.

Мономеры, используемые для приготовления углеводородной фазы, должны удовлетворять строгим требованиям по содержанию примесей, оказывающих существенное влияние на скорость полимеризации. Устранить многие из перечисленных возмуще­ний при управлении процессом полимеризации невозможно.

Нагрузку всего производства по углеводородной фазе стаби­лизируют регулятором расхода. Ее состав стабилизируют регу­лированием соотношения расхода углеводородной фазы и рас­ходов бутадиена и стирола дистиллята.

Соотношение расходов углеводородной и водной фаз, угле­водородной фазы и инициатора, эмульсии и модификатора (ре­гулятора) молекулярной массы обеспечивается регуляторами соотношения.

Температура в полимеризаторах автоматически изменяется таким образом, чтобы при наличии возмущений была достигну­та цель управления. Для этого предусматривается двухконтур­ная АСР, в которой основным является регулятор конверсии мономеров, а вспомогательными—регуляторы температуры (на схеме показан только регулятор температуры последнего полимеризатора). Чтобы исключить влияние колебаний начальной температуры эмульсии на процесс полимеризации, температуру углеводородной фазы после теплообменника 4 стабилизи­руют.

Расход прерывателя должен определяться количеством неза-полимеризовавшихся мономеров. Это обеспечивается двухкон­турной системой, в которой основным является регулятор кон­версии мономеров, а вспомогательным—регулятор расхода пре­рывателя.

Расход пеногасителя стабилизируют на постоянном зна­чении.

5.4.1.3. Автоматизация процесса дегазации. При управлении процес­сом дегазации необходимо поддерживать на определенном зна­чении температуру в отгонных колоннах. Стабилизацию темпе­ратурного режима в колоннах 20 и 26 осуществляют коррекци­ей работы регулятора соотношения расходов латекса и увлаж­ненного водяного пара, а в колонне 23 - двухконтурной АСР в которой основным является регулятор температуры, а вспо­могательным -регулятор расхода увлажненного водяного пара. Кроме того, стабилизируют температуры продуктов после теп­лообменников 22, 25 и 27 изменением расхода обратного рассо­ла. Расход пеногасителя в колонну 26 стабилизируют.

Расход антиоксиданта должен определяться расходом латекса, что обеспечивается регулятором соотношения этих рас­ходов.

5.4.1.4. Автоматизация процесса коагуляции. При управлении про­цессом коагуляции поддерживают постоянными нагрузку на коагуляционные аппараты (стабилизирующим регулятором), а также соотношения расхода латекса и расходов коагулянта и пластификатора (регуляторами соотношения).

Расход свежей серной кислоты должен быть таким, чтобы значение рН смеси серной кислоты и возвратного серума было постоянным. Для этого используют двухконтурную АСР, где главным является регулятор рН, а вспомогательным - регуля­тор расхода. Расходы кислоты в коагуляционные аппараты стабилизируют.

Промывку каучука осуществляют при постоянном расходе воды, подаваемой в емкость 36. Для этого устанавливают ста­билизирующий регулятор.

5.4.1.5. Автоматизация процесса сушки. При управлении процессом сушки стабилизируют температуру в сушилке 41 с помощью двухконтурной АСР, в которой главной регулируемой величиной является температура, а вспомогательной—расход пара к кало­риферу сушилки.

 

– Конец работы –

Эта тема принадлежит разделу:

АВТОМАТИЗАЦИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ

Омский государственный технический университет... С Ф Абдулин...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Синтетического каучука

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Омск 2002
АВТОМАТИЗАЦИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ: Учебное пособие / С.Ф. Абдулин. – Омский государственный технический университет: Омск, изд-во ОмГТУ, 2002. – 150 с.   Рас

Автоматического управления
  Замена ручного труда человека в операциях управления на управление с помощью технических средств называется автоматизацией. Технические средства, с помощью которых выполняютс

Основы метрологии и техники измерений
Базовой основой современных АСУТП являются системы автоматического контроля (САК), позволяющие быстро получить достоверную измерительную информацию о режимных параметрах технологических процессов,

Основные метрологические характеристики ИП
Качество ИП характеризуется рядом показателей, важнейшими из которых являются: погрешность, чувствительность, цена деления шкалы, предел измерения и динамическая погрешность. Погрешность х

Резисторные датчики
один из наиболее широко применяемых принципов преобразования физических величин основан на изменении сопротивления чувствительных элементов, которые могут быть реализованы в виде потенциометров, те

Емкостные датчики
эти датчики имеют разнообразные области применения, однако наибольшее распространение они получили для измерения малых перемещений и физических величин, легко преобразуемых в перемещение, например

Электромагнитные датчики
Электромагнитные датчики получили широкое применение в различных областях науки и техники благодаря достаточно высокой точности, широким функциональным возможностям, надежности, особенн

Методы измерения важнейших технологических параметров.
2.3.1.Измерение температуры Температура – один из распространенных параметров, который приходится контролировать в различных средах: газовой, паровой, жидкостной и твердой. В совр

Термометры расширения
К ним относится жидкостные стеклянные, биметаллические и дилатометрические термометры. Жидкостные стеклянные термометры применяются для измерения температуры жидких и газообразных с

Термометры сопротивления
Термометры сопротивления основаны на зависимости сопротивления проводников (металлов) и полупроводников от температуры R =f(t). При этом сопротивление металлических термометров (медн

Термоэлектрические термометры
Основаны на термоэлектрическом эффекте, заключающемся в том, что в замкнутой цепи, состоящей из двух разнородных проводников, возникает электрический ток, если хотя бы два места соединения (спая) п

Технологических параметров
  Цель автоматического регулирования, являющегося частным случаем автоматического управления, состоит в обеспечении заданного алгоритма функционирования – закона изменения некоторого

Объекты регулирования и их свойства
Обоснованный выбор и расчет регулятора в первую очередь определяется достоверностью математической модели объекта регулирования (ОР) (машина, аппарат, технологический процесс), к которому подключае

Автоматические регуляторы и законы регулирования
  3.3.1. Классификация линейных регуляторов По функциональному назначению и конструктивномуисполнению регуляторы можно квалифицировать следующим образом: 1.

Усилительно-преобразовательные устройства
Усилитель является одним из основных элементов большинства систем автоматического контроля, регулирования и управления, так как мощность, развиваемая чувствительным элементом (датчиком) недостаточн

Исполнительные механизмы и регулирующие органы.
  Исполнительное устройство АСР состоит из двух функциональных блоков: исполнительного механизма (ИМ) и регулирующего органа (РО). Исполнительный механизм под действием управляющего в

Управление приводами
Задачей системы управления приводами является организация пуска и торможения машин и механизмов, переход с одной ступенискоростина другую, реверс и осуществление этих операций в определенной послед

Непрерывного действия
  Исследование элементов и автоматических систем регулирования (управления) связано с изучением процессов, в них протекающих. Характер этих процессов описывается с помощью различных з

Дифференциальные уравнения для элементов и систем
Вывод дифференциальных уравнений элементов системы – сложная творческая работа, при которой допускаются определенная идеализация процесса, пренебрежение отдельными факторами, рассмотрение частных с

Дискретные автоматические системы регулирования
  3.10.1. Понятия о дискретных АСР и их классификация В непрерывных системах существуют только непрерывные сигналы, являющиеся непрерывными функциями времени. В дискретных АС

Общая характеристика АСУТП.
АСУТП – это человеко-машинная система, обеспечивающая эффективное функционирование технологического объекта на основе быстрой и точной информации о состоянии объекта и выработки соответствующих ком

Общая характеристика аппаратурной основы АСУТП
  Внедрение микропроцессоров в самые различные устройства автоматики на всех уровнях управления создало насыщение цифровым «интеллектом» большинство устройств, составляющих аппаратурн

Элементы техники проектирования систем автоматизации
5.1.1. Краткие сведения о типовых технологических процессах   Несмотря на большое разнообразие химических производств, между ними есть определенное сходство по содержанию в и

Автоматизация производства нефтепродуктов
5.2.1. Автоматизация управления процессами первичной переработки нефти Обезвоженная и обессоленная нефть (после блока ЭЛОУ) поступает в колонну отбензинивания 1 (рис.5.4), где происходит и

Процесс замедленного коксования
Коксование нефтяных остатков и высококипящих дистиллятов вторичного происхождения используют для получения мало­зольного электродного кокса, применяемого в алюминиевой про­мышленности. Одновременно

Некоторых органических продуктов
5.3.1. Автоматизация управления процессом производства олифинов Производство олефинов основано на термическом разложении углеводородного сырья на ряд продуктов и выделении этих про­дуктов

Автоматизация производства изопренового каучука
5.4.2.1. Технологическая схема производства. Осушенная углеводородная шихта по­дается на охлаждение в холодильник-испаритель 1, охлаждаемый кипящим пропаном (рис. 5.2

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги