рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Поршневі насоси

Поршневі насоси - раздел Философия, ГІДРАВЛІКА І ГІДРО-, ПНЕВМОПРИВОД   Принцип Дії І Типи Насосів   Всмоктува...

 

Принцип дії і типи насосів

 

Всмоктування й нагнітання рідини в поршневому насосі простої дії відбувається нерівномірно: за два ходи поршня рідина один раз всмоктується і один раз нагнітається.

За кількістю всмоктувань або нагнітань, які здійснюються за один оберт кривошипу, або за два ходи поршня, поршневі насоси поділяться на:

- насоси простої дії;

- насоси подвійної дії;

- диференціальні насоси.

За розташуванням поршня розрізняють вертикальні й горизонтальні поршневі насоси.

Схема насосу простої дії наведена на рис. 51. В циліндрі 5 поршень 3 здійснює зворотно-поступовий рух. При русі поршня вправо об’єм збільшується, тиск зменшується, всмоктувальний клапан 1 відкривається і рідина поступає в циліндр. Так відбувається процес всмоктування при закритому клапані 3. При русі поршня вліво об’єм рідини в циліндрі зменшується, тиск в циліндрі зростає. Під дією тиску всмоктувальний клапан 1 закривається, а нагнітальний клапан 3 відкривається і рідина потрапляє в напірний трубопровід. Далі при обертанні маховика 9 кривошипно-шатунний механізм 8 повторює цикл.

За один оберт маховика в поршневому насосі простої дії відбувається два хода поршня: один раз рідина всмоктується і один раз нагнітається.

 

  а

 

Рис. 51. Схема горизонтального насосу простої дії:

 

1 – всмоктувальний клапан; 2 – робоча камера; 3 - нагнітальний клапан; 4 – поршень; 5 – циліндр; 6 – шток; 7 - крейцкопф; 8 – шатун; 9 – маховик;

а – графік подачі поршневого насоса.

 

Подача поршневого насосу за рахунок здійснюється за рахунок зворотно-поступового руху поршня пульсуюча. Це наглядно видно з графіка подачі а на рис. 51. Для зменшення пульсацій рідини в поршневому насосі встановлюють повітряні ковпаки (рис. 52), використовують насоси подвійної дії (рис. 53) або переходять на диференціальну схему подачі (рис. 54).

Повітряні ковпаки служать для вирівнювання подачі, вони являють собою циліндричної або іншої форми закриту посудину 1, 5 (рис. 52), у верхній частині якої знаходиться повітря, що згладжує завдяки своєї пружності пульсації подачі.

В залежності від призначення встановлюють по одному ковпаку на нагнітальному і всмоктувальному трубопроводах або і на нагнітальному, і на всмоктувальному трубопроводах одночасно.

Сутність дії ковпака нагнітальної сторони (рис. 52, поз.1) полягає в тому, що за такою схемою рідина по­дається насосом не

  Рис. 52. Поршневий насос з повітряними ковпаками:   1, 5 – повітряні ковпаки; 2, 6 – нагнітальний і всмоктувальний трубопроводи; 3, 4 – нагнітальний і всмоктувальний клапани; 7 – поршень; 8 – шток; 9 - крейцкопф.

 

безпосередньо в напірний трубопровід, а у ковпак, частково заповнений повітрям, яке при поточній підвищеній подачі стискається, а при зменшеній - розширюється. Внаслідок зміни об’єму повітря від Vmax до Vmin і навпаки, об’єм рідини у ковпаку змінюється у зворотному відношенні, тобто максимальному об’єму повітря в ковпаку відповідає мінімальний об’єм рідини і навпаки. Отже, повітряний ковпак приймає об’єм рідини при зростанні подачі насосу і повертає цей об’єм у нагнітальний трубопровід при зменшенні подачі. У зв’язку з цим тиск у ковпаку змінюється від pmіn до рmах і знову знижується до pmіn. Однак, оскільки об’єм повітря в ковпаку може бути відносно великим, то при зменшенні його на величину DV, що дорівнює об’єму акумульованої в ковпаку рідини, вказана зміна об’єму не супроводжується помітною зміною тиску, тобто при достатньому повітряному об’ємі ковпака тиск у ньому під час роботи насосу залишається практично незмінним. Тому рідина потрапляє в напірний трубопровід під сталим напором.

Степінь нерівномірності тиску в ковпаку характеризується величиною

 

. (3.33)

 

Очевидно, що чим більша різниця (рmax - pmin) і відповідно d, тим сильніші коливання швидкості рідини, що витікає з ковпака в нагнітальний трубопровід під дією тиску в ньому. На практиці вважають, що при d = 0,025 зміни швидкості рідини в трубопроводі настільки малі, що рух можна вважати сталим.

Аналогічне міркування можна провести і стосовно ковпаку на всмоктувальному трубопроводі (рис. 52, поз. 5), з тією лише різницею, що в цьому випадку тиск у ковпаку змінюється по ходу поршня в протилежному порядку.

У відповідності зі сказаним раніше, розрахунок ковпаків зводиться до визначення таких їхніх розмірів, при яких ступінь нерівномірності не перевершує заданої величини.

При наявності повітряних ковпаків в обох циліндрах мож­на приймати при розрахунках, що насос перекачує рідину з нижнього (всмоктувального) ковпака у верхній (нагнітальний), долаючи різницю тисків між ними.

Істотно знижується не­рівномірність в насосах багаторазової дії. Насоси подвійної дії (рис. 53) мають два всмоктувальних і два нагнітальних клапани. Насос потрійної дії являє собою потроєні насоси простої дії з загальним трубопроводом всмоктування і нагнітання й колінчастим валом, причому кривошипи кожного з трьох насосів простої дії розташовані під кутом 1200 один відносно одного. За один оберт колінчастого валу рідина три рази всмоктується і три рази нагнітається.

Диференціальні поршневі насоси (рис. 54) відрізняються від насосів простої дії більш рівномірною подачею, оскільки повна подача за подвійний хід розподіляється рівномірно між ходами. У цих насосах при ході поршня або плунжера вправо утворюється розрідження в камері А над усмоктувальним клапаном, і вона заповнюється рідиною. Одночасно об’єм рідини (який дорівнює об’єму поршня або плунжера, що виходить з внутрішньої порожнини насосу) витискується з напірної камери Б при закритому нагнітальному клапані. При зворотному ході (вліво) усмоктувальний клапан закривається, і об’єм рідини, що поступив до цього у камеру А, витискується з неї через нагнітальний клапан.

 

 

Рис. 53. Поршневий насос подвійної дії. Рис. 54. Диференціальний насос.

 

При роботі в умовах високих тисків поршневі насоси потребують складних ущільнюючих пристроїв (поршневі кільця, еластичні манжети), високоточної обробки поверхні поршня та циліндра. Тому для створення високих тисків поршень замінюють порожнім або суцільним плунжером (скалкою). У залежності від конструкції насоси поділяються:

- на власно поршневі (рис. 51);

- плунжерні (скальчасті – рис. 55).

Різниця між поршневим насосам і плунжерним насосом: в поршневих насосах робочим органом є поршень, який має ущільнюючі кільця, що пришліфовані до внутрішньої дзеркальної поверхні циліндру; плунжерні насоси не мають циліндричних кілець і відрізняються від поршневих значно більшим відношенням довжини до діаметру.

В плунжерному насосі роль поршня відіграє плунжер, який ущільнюється за допомогою сальника.

Є плунжерні насоси подвійної дії, які мають більш рівномірну подачу. Є насоси потрійної дії – триплекс.

На рис. 55 представлений плунжерний горизонтальний насос простої дії, в якому всмоктування й нагнітання рідини відбувається внаслідок зворотно-поступового руху плунжера 1 в циліндрі 3. Ущільнення плунжера здійснюється за допомогою сальника 2. В промисловості плунжерні насоси знайшли більш широке використання, ніж поршневі, оскільки потребують менш ретельної обробки внутрішньої поверхні циліндру і простіше ущільнюються (підтягуванням або заміною набивки 2). У зв’язку з цим їх використовують для перекачування забруднених і в’язких рідин, а також для створення більш високих тисків. За швидкістю обертання валу кривошипа поршневі насоси підрозділяють на тихохідні (40÷60 об./хв.), нормальні (40÷60 об./хв.) та швидкохідні (120÷180 об./хв. і більше).

 

Рис. 55. Схема горизонтального плунжерного насосу простої дії:   1 - плунжер (скалка); 2 - сальник; 3 - циліндр; 4 - всмоктувальний клапан; 5 - нагнітальний клапан. Рис. 56. Діафрагмовий насос:   1 – плунжер; 2 – циліндр; 3 – корпус; 4 , 7 – всмоктувальний і нагнітальний клапани; 5, 6 – всмоктувальний і нагнітальний патрубки; 8 – діафрагма; 9 – сальник; 10 – грунбукса.

 

Різновидом поршневого насосу простої дії є діафрагмовий (мембранний) насос (рис.56), який використовують для перекачування забруднених і агресивних рідин. У цьому насосі циліндр 2 і плунжер 1 відокремлені від рідини, що перекачується, гнучкою перегородкою-діафрагмою 8 з гуми або спеціальної сталі. При русі плунжера наверх діафрагма під дією різниці тисків з двох її боків прогинається впра­во, при цьому відкривається всмоктувальний клапан 4 і рідина потрапляє у насос. При ході плунжера вниз діафрагма прогинається вліво, відкривається нагнітальний клапан 7 (всмоктувальний клапан при цьому закривається), і рідина потрапляє в нагнітальний трубопровід 6.

 

– Конец работы –

Эта тема принадлежит разделу:

ГІДРАВЛІКА І ГІДРО-, ПНЕВМОПРИВОД

ГІДРАВЛІКА І ГІДРО ПНЕВМОПРИВОД... КУРС ЛЕКЦІЙ... Навчальний посібник Херсон Рецензенти Бондарев В Т...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Поршневі насоси

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Херсон - 2009
ББК 30.123 (4 Укр.) Я73 Ч-90 УДК 62. Рекомендовано міністерством освіти і науки України як навчальний посібник для студентів

Основні фізичні властивості рідин
  При виведенні основних закономірностей в гідравліці користуються такими поняттями: Елементарний об’єм – це об’єм сукупних молекул, які знаходяться на м

Густина й питома вага
Густина – маса рідини в одиниці об’єму   , кг/м3

Диференціальні рівняння статики Ейлера
Закони гідравліки можуть бути виражені математично через диференціальні рівняння для суцільного середовища. В об’ємі рідини виділяємо елементарний паралелепіпед з ребрами довжиною dx, d

Основне рівняння гідростатики
  Якщо на рідину, що перебуває у нерухомій судині, діє лише сила ваги, то такий стан рідини називають абсолютним спокоєм (відносно Землі). Нехай рідина перебуває в судині й на

Тиск рідини на плоску стінку
  Тиск, що утворює рідина у будь-якій точці відкритої судини, залежить від глибини занурення h цієї точки й густини рідини r і може бути визначений з рівняння:

Тиск рідини на криволінійну циліндричну стінку
Для циліндричної криволінійної поверхні сила тиску F може бути отримана як геометрична сума вертикальної й горизонтальної складових (рис. 14):  

Швидкість і витрата
  Розглянемо рух рідини у трубі постійного перерізу. Основними характеристиками є швидкість і витрати рідини. Витратою називається кількість рідини, що протікає через переріз потоку з

Моделі руху рідини
  При вивченні руху рідини найбільшого поширення набула струминна модель, яка базується на поняттях, що розглядаються нижче.    

Гідравлічний радіус і еквівалентний діаметр
Це основні розрахункові лінійні розміри. Гідравлічний радіус R (м) - це відношення площі затопленого перерізу трубопроводу або каналу (S, м2) до змоче

Рівняння нерозривності (суцільності) потоку
Встановимо загальну залежність між швидкостями в потоці рідини, для якої дотримується умова суцільності, або нерозривності руху, тобто не утворюється пусток, не заповнених рідиною. Виділим

Диференціальне рівняння Нав’є – Стокса
При русі реальної (в’язкої) рідини в потоці діють сили: масові, гідростатичного тиску, тертя, а також сили стиску й розтягування. Нав’є і Стоксом виведена система диференціаль

Диференціальні рівняння руху Ейлера
В різних точках рідини, що рухається, в результаті дії зовнішніх сил виникає тиск, який називають гідродинамічним. Припустимо, що на рідину, яка рухається, діють об’ємні сили, проекції яких на осі

Рівняння Бернуллі
2.5.1. Виведення рівняння Подальший розвиток системи диференціальних рівнянь Ейлера провів Бернуллі. Він помножив рівняння системи почленно на прир

Принцип виміру швидкості і витрати рідини
  Рівняння Бернуллі використовується для визначення швидкостей, витрат і часу витоку рідини з резервуарів. Для визначення швидкості рідини може бути застосований диференціаль

Рівномірний рух рідини
Розглянемо рух рідини у нахиленому трубопроводі. Виділяємо у трубопроводі відрізок довжиною l (рис. 22а).  

Розподіл швидкості по горизонтальному перерізу труби
Розглянемо ламінарний рух рідини у трубопроводі (рис. 23а), в якому: r0 – повний радіус, r – поточний радіус, t – дотична напруга, v – вектор швидкості

Середня швидкість при ламінарному русі
Для практичних розрахунків необхідно знати середнє значення швидкості. Напишемо вираження для елементарної витрати рідини dQ, що проходить через елементарну площинку dS кільцевого

Втрати напору при русі рідини
Враховуючи, що J = Dh : l, вираження (2.47) запишемо у вигляді:   . (2.48)

Турбулентний рух
При турбулентному режимі руху на відміну від ламінарного характер потоку порушується. Всі цівки перемішуються, траєкторії рухомих частинок набувають вельми складної форми. Чисельні експери

Втрати напору при русі рідини
Розрахунок гідравлічного опору при русі реальних рідин по трубопроводах є одним з основних прикладних питань гідродинаміки. Важливість визначення втрати напору hвтр (або

Витікання рідини через отвори та насадки
  Розглянемо витрату рідини при її витіканні крізь круглий малий отвір в тонкому днищі або у стінці відкритої посудини, в якій підтримується постійний рівень

Гідравлічний розрахунок сифонів
При розрахунку сифону визначають граничні значення висоти Z підйому трубопроводу над верхнім рівнем рідини, а також витрату Q (рис. 32).  

Гідравлічний удар
  Гідравлічний удар – це підвищення або зниження тиску, яке виникає при різкій зміні швидкостей течії у напірному трубопроводі (в результаті швидкого закриття або відкриття засувок аб

Гідравлічний розрахунок трубопроводів
Гідравлічний розрахунок трубопроводів проводиться з метою визначення основних геометричних параметрів для пропуску визначеної витрати рідини і втрат напору. В залежності від довжини трубопроводі

Розрахунок простого трубопроводу
  Гідравлічний розрахунок простих трубопроводів зводиться до вирішення однієї з таких задач: - визначення витрати Q (м3/с) при заданих довжині L (м),

Техніко-економічний розрахунок трубопроводів
  Питання про найвигідніші швидкості, а отже, про діаметр магістрального трубопроводу вирішується техніко-економічним розрахунком. Найвигідніший діаметр трубопроводу буде так

ГІДРАВЛІЧНІ МАШИНИ
  Гідравлічні машини служать для перетворення механічної енергії двигуна в енергію рідини, що переміщається (насоси) або гідравлічної енергії потоку рідини в механічну енергію (гідрав

Основне рівняння відцентрових машин Ейлера
В каналах між лопатками робочого колеса рідина, яка рухається уздовж лопаток, одночасно здійснює обертальний рух разом з колесом. При русі в міжлопатевому каналі кожна частина рідини з одн

Закони пропорційності
Закони пропорційності розповсюджуються на геометрично подібні лопатеві машини. Геометрично подібними лопатевими машинами називаються такі, в яких усі відповідні розміри знаходяться в однакових спів

Характеристики відцентрових насосів
  Роботу насосу можна охарактеризувати системою трьох кривих: Н=f(Q); N=f(Q) i h=f(Q) при сталому значені частоти оберті

Коефіцієнт швидкохідності
  Усю розмаїтість різних типів коліс відцентрових та осьових насосів по принципу їхньої геометричної та динамічної подібності можна поділити на кілька груп, які характеризують

Спільна робота насосів
  На практиці використовують паралельне й послідовне з’єднання насосів. У випадку, якщо продуктивності одного насосу не вистачає, то вмикають в роботу два насоси, які з'єднують

Струминні насоси
В струминних насосах (рис. 50) робоча рідина (як правило, вода або водяна пара) з великою швидкістю із сопла 1 потрапляє в камеру змішування 2. При цьому за рахунок поверхневого тертя

Продуктивність
  Об’єм рідини, який всмоктується насосом за один хід поршня зліва направо при безперервному русі рідини за поршнем, дорівнює FS (позначення після формули 3.37); при відсутност

Нерівномірність подачі
Зміну продуктивності поршневого насосу за один оберт валу кривошипу можна зобразити графічно, що дає наглядне уявлення про послідовність всмоктування та нагнітання, а також можливість оцінити ступі

Шестеренні насоси
У корпусі 1 насосу (рис. 58) встановлені дві шестерні 2, одна з яких - ведуча - приводиться в обертання від електродвигуна. Між корпусом і шестернями є невеликі радіальні й тор

Гвинтові насоси
Бувають одногвинтові (однозаходні), двогвинтові й тригвинтові. Однозаходні насоси мають гвинт 3 (рис. 59), який розташований усередині (обойми) 1. Обойма з гвинтом може поміщ

Продуктивність
  Продуктивність гвинтових насосів збільшується зі зростанням числа обертів гвинта, при цьому тиск, який створює насос, залишається без зміни. Поперечний переріз ротору 2

Роторно – поршневі насоси
Подача одноциліндрових поршневих насосів, як було сказано раніше характеризуються нерівномірністю. Для більш рівномірної подачі рідини використовують багатоциліндрові поршневі насоси, циліндри яких

Насоси з обертовими поршнями
Для допоміжних цілей і, зокрема, для перекачування великих об’ємів в’язких рідин під невеликим напором (тиском), використовують насоси із зубчастими роторами (поршнями спеціальних профілів), які на

Інші види гідравлічних машин
Як було вказано на початку розділу, до гідравлічних машин, крім насосів, відносяться гідротурбіни і гідромотори. Гідротурбіною називається гідравлічний двигун, який служить для перетворення

Загальні поняття
Часто машини, між якими потрібно передати механічну енергію, мають характеристики, що не відповідають одна одній, наприклад, треба передавати механічну енергію між валами, які обертаються з різними

Гідромуфти і гідротрансформатори
  4.2.1. Гідромуфти   Гідромуфти використовують для захисту двигунів від небезпечних перевантажень і для зміни числа обертів валів різних м

Гідроапаратура та інші елементи гідроприводу
Гідроапаратурою називають пристрої, які служать для управління потоками рідини, зміни або підтримання тиску або витрати, а також зміни напрямку руху потоку. Регулювання може бути ручним або автомат

Гідророзподільні пристрої
Гідророзподільні пристрої поділяють по типу запірно-регулюючих елементів. Вони призначені для розподілу і зміни напрямку потоку рідини між вузлами і елементами гідроприводу. За конструкційними озна

Дросельні пристрої
Використовуються в гідроприводах для обмеження або регулювання витрати рідини і являють собою гідравлічні опори. Ними можуть бути нерегульовані гідравлічні опори (гідравлічні демпфери) і регульован

Клапани
Це найбільш розповсюджені елементи гідроприводів. За їхньою допомогою захищають вузли гідроприводу від перевантажень, встановлюють певний напрямок потоку, заданий тиск, розподіляють потік на частин

Загальні положення
  У сучасній техніці і, зокрема, в системах автоматизації виробничих процесів застосовують разом з гідравлічними, пневматичні приводи і механізми, засновані на використовуванні як

Типи поршневих компресорів
  Поршневі компресори виготовляються переважно з нерухомими циліндрами і, рідше – з циліндрами, що обертаються, виконаними у вигляді багатоциліндрового зіркоподібного блоку. Останні к

Органи розподілу і регулювання компресора
  Розподіл газу в компресорах здійснюється, в основному, за допомогою клапанів і, рідше, золотників, причому, клапани виконуються самодіючими і несамодіючими. Самодіючі клапани можуть

Роторні пластинчасті компресори
  Друге місце за поширеністю після поршневих посідають пластинчасті компресори. Принцип дії і конструктивні елементи пластинчастих компресорів (рис. 73) аналогічні пластинчастим насос

Пневматичні двигуни
  Пневматичні об'ємні двигуни, як і гідравлічні, мають низку істотних переваг – високий пусковий момент, малу масу, що припадає на одиницю потужності, вибухобезпечність та ін. Вони по

Пневмодвигуни обертального руху
  Як пневматичні двигуни обертального руху (пневмомотори) застосовують переважно пластинчасті й поршневі машини і рідше – машини інших типів (шестеренчасті, гвинтові та ін.) Принцип ї

Модуль 1
Гідростатика і гідродинаміка*   1. Система рівнянь гідростатики Ейлера. 2. Тиск рідини у судині, що обертається навколо вертикальної осі.

Варіанти завдань
  № вар. Питання № вар. Питання

Гідравлічні машини
  1. Висота всмоктування насосу. 2. Потужність, що споживається насосом. 3. Напір, що створюється відцентровим насосом. 4. Вплив конструкції лопаток на напі

Варіанти завдань
  № вар. Питання № вар. Питання

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги