рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ТИРИСТОРНЫЙ ПУСКАТЕЛЬ

ТИРИСТОРНЫЙ ПУСКАТЕЛЬ - раздел Философия, ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ АППАРАТЫ На Рис. 16.4 Показан Один Из Вариантов Схемы Бесконтактного — Тиристорного Пу...

На рис. 16.4 показан один из вариантов схемы бесконтактного — тиристорного пускателя. Силовой блок Б1 содержит силовые тиристоры VS1VS3 и диоды VD1VD3, рассчитанные на номинальный и пуско­вой токи двигателя М. При подаче сигнала управления на электроды /—2, 34, 56 тиристоры открываются и двигатель подключается к се­ти. В отрицательный полупериод, когда тиристоры закрываются отри­цательным анодным напряжением, ток двигателя проходит по диодам VD1VD3. Диоды могут быть заменены тиристорами.

При снятии сигнала управления (при перегрузке, потере фазы, на­жатии кнопки «Стоп») тиристоры закрываются. Следующий полупериод тока пропускается диодами. После этого диоды VD1, VD2, VD3 за­крываются и двигатель отключается от сети. По тиристорам и диодам протекает лишь небольшой ток утечки.

Сигналы управления тиристорами формируются в блокинг-генераторе Б2, который получает напряжение от блока питания БЗ. При на­жатии кнопки «Пуск» включается тиристор VS5 и все напряжение при­кладывается к резистору R3. При этом транзистор VT3 закрыт, так как напряжение на резисторе R3 больше, чем на резисторе R4. По мере за­ряда конденсатора С2 наступают условия для открытия транзистора VT3 и конденсатор С2 начинает разряжаться на обмотку , трансфор­матора Т2. Электродвижущая сила, наводящаяся при этом на обмоткеспособствует быстрому и полному открытию транзистора VT3. При разряде конденсатора напряжение на резисторе R3 возрастает, транзис­тор VT3 закрывается и снова начинается заряд конденсатора С2. Та­ким образом, генерируются импульсы тока в обмотке и в трех вы­ходных обмотках появляются управляющие импульсы. Диоды VD5—VD7 пропускают импульсы только положительной полярности.

Длительность импульса 30 мкс при паузе между импульсами 300 мкс (частота около 3 кГц).

Аналогичные схемы могут управляться сигналами постоянного тока или переменным током низкой частоты. Использование блокинг-генератора дает возможность быстро включать тиристор и уменьшить нагруз­ку по его управляющему электроду.

При нормальном режиме транзистор VT2 блока Б2 насыщен и лам­па Л2 не горит. Если на контакты 7, 8 блока Б2 подано напряжение с одноименных контактов блока защиты Б4, тиристор VS4 открывается и блокинг-генератор лишается питания. Блок питания БЗ включается только на резистор R8. При потере питания генерация в блоке Б2 пре­кращается и тиристор VS5 отключается. Одновременно транзистор VT2 закрывается и загорается лампа Л2, сигнализируя об отключении пус­кателя от защиты. В случае потери фазы в выходном напряжении (по­сле диодов VD8—VDW) появляется пауза. В эту паузу блок Б2 оста навливается и тиристор VS5 отключается, что ведет к закрытию си­ловых тиристоров.

Блок Б4 защиты двигателя и силовых тиристоров от перегрузки питается от трансформаторов тока ТА1—ТАЗ. Напряжение с нагрузоч­ных резисторов выпрямляется и подается на потенциометр R1. Пара­метры трансформаторов ТА1—ТАЗ и резисторов Rl, R5—R7 выбира­ются так что при номинальном токе во всех трех фазах напряжение, снимаемое с потенциометра R1, меньше напряжения пробоя стабили­трона VD11. До тех пор пока напряжение на стабилитроне меньше на­пряжения пробоя (1/<УПроб), сопротивление стабилитрона очень вы­соко. При этом ток базы транзистора VT1 недостаточен для его откры­тия. Если ток хотя бы в одной фазе превысит номинальное значение, то возникает неравенство U>U'проб, сопротивление стабилитрона резко падает, ток в базе VT1 возрастает и он насыщается. Ток в стабилитро­не ограничивается резистором R2 до допустимого значения. Если вос­становится неравенство U<UnJme, то сопротивление стабилитрона снова возрастет, транзистор VT1 закроется. После открытия транзистора VT1 начинается заряд конденсатора С1. Напряжение с конденсатора С1 на выход 7, 8 не подается до тех пор, пока не превысит напряжение пере­ключения динистора VD4. Динистор имеет такую же вольт-амперную характеристику, как и тиристор при /у=0. Если перегрузка была на­столько кратковременной, что конденсатор С2 не успел зарядиться, то напряжение на выходе 7, 5 не появится и пускатель останется в работе. Если Uc станет больше напряжения переключения динистора VD4, про­изойдет разряд конденсатора С1 на цепь управления тиристора VS4 блока Б2 и последний откроется. При этом прекратится генерация им­пульсов, открывающих VS1VS3, и двигатель остановится. Параметр срабатывания блока защиты регулируется потенциометром R1. За счет усложнения блока защиты можно создать выдержку времени в зависи­мости от условия перегрузки. Защита двигателя и силовых тиристоров от токов КЗ в данном пускателе осуществляется быстродействующими предохранителями FillFU3 типа ПНБ-5.

 

 

 

 


 

Рис. 16.4. Тиристорный пускатель

 

 

По сравнению с контактными тиристорный пускатель обладает следующими преимуществами:

1.Отсутствие электрической дуги при коммутациях делает аппарат незаменимым при работе во взрывоопасных и пожароопасных средах.

2.Высокая электрическая износостойкость (15-10е циклов).

3.Совершенная защита от токов перегрузки и КЗ, а также при по­тере фазы, что обеспечивает увеличение срока службы двигателей.

4.Допустимое число включений достигает 2000 в час.

5.Длительность отключения не превышает 0,02 с.

6.Высокая надежность и долговечность, а также отсутствие необ­ходимости в уходе при эксплуатации.

Недостатками тиристорного пускателя являются сложность схемы, большие габариты и высокая стоимость. Несмотря на эти недостатки, бесконтактные пускатели находят широкое применение во взрыво- и по­жароопасных производствах и других областях техники, требующих вы­сокой надежности.

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ АППАРАТЫ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ТИРИСТОРНЫЙ ПУСКАТЕЛЬ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дается краткая характеристика каждого издания с рекомендациями по использованию.
Классификация электрических аппаратовможет быть проведена по ряду признаков: назначению (основной вы­полняемой функции), области применения, принципу дей­ствия, роду тока, исполнен

ЭЛЕКТРОМАГНИТЫ ПОСТОЯННОГО ТОКА
Электромагнитными называются устройства, предназначен­ные для создания в определенном пространстве магнитного поля с помощью обмотки, обтекаемой электрическим током. В нейтральны

ХАРАКТЕРИСТИКИ НЕКОТОРЫХ МАГНИТНОМЯГКИХ МАТЕРИАЛОВ
  Для магнитных цепей электрических аппаратов применяются самые разнообразные магнитномягкие материалы, от правильного выбора которых во многом зависит качество конструкции электри­че

ПРОМЕЖУТКОВ
Для магнитных систем электрических аппаратов, когда учиты­ваются потоки рассеяния и полные потоки воздушного зазора, су­щественным является определение магнитных проводимостей воз­душных путей — пр

Для случая полюс — плоскость
Линии индукции, выходящие из боковых граней, занимают весь объем вокруг полюса и имеют сложную форму (рис.2.1). Поле в результате этого, как уже указывалось, получается не плоскопараллельным. В это

Б. Полюса цилиндрической формы
Для электрических аппаратов широко применяются магнитные системы с цилиндрическими полюсами. Опыт показывает, что боковая удельная проводимость между цилиндрическими полю­сами зависит от величины д

Полюс — плоскость по координате z
Для плоскопараллельного поля суммарный поток с правой половины торца полюса и грани в (рис.) можно опреде­лить как  

ПРОСТЫХ ОБЪЕМНЫХ ФИГУР ПОЛЯ
  Расчет проводимостей воздушного зазора методом суммирования простых объемных фигур поля, предложенный Ротерсом, на практике получил достаточно широкое распространение. Однако сущест

РАСЧЕТ МАГНИТНЫХ ПРОВОДИМОСТЕЙ ВОЗДУШНЫХ ПУТЕЙ ГРАФИЧЕСКИМ МЕТОДОМ
  Для практических целей широко используются магнитные цепи, у которых магнитная проводимость рассеяния на единицу длины сердечника непостоянна. Поле таких цепей неоднородно. Оно силь

ОБЩИЕ СВЕДЕНИЯ О МАГНИТНЫХ ЦЕПЯХ АППАРАТОВ
а) Магнитная цепь аппарата, основные законы. Электромагниты нашли в аппаратостроении широкое при­менение и как элемент привода аппаратов (контакторы, пускатели, реле, автоматы, вык

ПОСТОЯННОГО ТОКА
а.) Расчет потоков рассеивания и индуктивности ка­тушки без учета сопротивления стали. Для электромаг­нитов, у которых катушка располагается на стержне, поток рассеяния связ

МАГНИТНАЯ ЦЕПЬ ЭЛЕКТРОМАГНИТОВ ПЕРЕМЕННОГО ТОКА
Магнитные цепи на переменном токе обладают сле­дующими особенностями. 1. Ток в катушке электромагнита зависит главным образом от ее индуктивного сопротивления. 2. Магнитное сопрот

КАТУШКИ ЭЛЕКТРОМАГНИТОВ
  В результате расчета магнитной цепи определяется поток в катушке и ее н. с. Катушка должна быть рас­считана таким образом, чтобы, с одной стороны, обес­печить требуемую н. с, а с др

ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА
  При заданном потоке падение магнитного потенциала уменьшает­ся с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материал

СИЛА ТЯГИ ЭЛЕКТРОМАГНИТОВ
а) Энергетический баланс электромагнита постоянно­го тока. Рассмотрим процесс возникновения магнитного поля в простейшем клапанном электромагните (рис. 4.1,а). После включения цепи напряжение источ

Динамика электромагнитов, время трогания и движения. Ускорение и замедление срабатывания
г) Сравнение статических тяговых характеристик электромагнитов постоянного и переменного тока. Для электромагнитов постоянного и переменного тока вели­чина силы может быть рассчита

ДИНАМИКА И ВРЕМЯ СРАБАТЫВАНИЯ ЭЛЕКТРОМАГНИТОВ
а) Время срабатывания. До сих пор мы рассматри­вали только статические характеристики электромагни­тов, когда в их обмотке проходит неизменный ток, при­чем якорь либо неподвижен, л

МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННЫМИ МАГНИТАМИ
а) Общие сведения.Для создания постоянного маг­нитного поля в целом ряде электрических аппаратов ис­пользуются постоянные магниты, которые изготавлива­ются из магнитно-твер­дых мат

Нагрев электроаппаратов. Нормы нагрева, термическая устойчивость.
ЭЛЕКТРОДИНАМИЧЕСКИЕ УСИЛИЯ В ЭЛЕМЕНТАХ АППАРАТОВ При коротком замыкании в сети через токоведущую часть ап­парата могут протекать токи, в десятки раз превышающие номи­нальные. Эти токи, вза

ЭЛЕКТРОДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ АППАРАТОВ
Электродинамические силы, возникающие в токоведущих ча­стях аппаратов, стремятся деформировать как сами проводники, так и изоляторы, с помощью которых эти проводники укреплены к заземленным частям

ИЗОЛИРОВАННЫЕ ПРОВОДНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА В НОРМАЛЬНОМ РЕЖИМЕ
Как показывают наблюдения, чем выше температура, воздейст­вию которой подвергаются изоляционные материалы, входящие в конструкции аппаратов, тем быстрее ухудшаются их механические и электрические к

ПРИ КОРОТКИХ ЗАМЫКАНИЯХ
Короткое замыкание в электроустановках сопровождается про­теканием по проводникам токов, значительно превышающих токи нормального рабочего режима. Так как длительность протекания токов короткого за

ПОНЯТИЕ О ВИДАХ ТЕПЛООБМЕНА
При наличии разницы температур в теле в нем происходит процесс выравнивания температур из-за потока тепла от мест с более высокой температурой к местам с более низкой температу­рой. По ана

ОТДАЧИ ТЕПЛА С НАРУЖНОЙ ПОВЕРХНОСТИ
ОКРУЖАЮЩЕЙ СРЕДЕ (ЖИДКОСТИ, ГАЗУ) В электротехнической практике весьма часто приходится рассчитывать превышение температуры наружной поверхности относительно температуры ж

ДЛЯ РАССМОТРЕНИЯ УСТАНАВЛИВАЮЩЕГОСЯ ПРОЦЕССА НАГРЕВА ТЕЛА ОТ ИСТОЧНИКОВ ТЕПЛА, РАСПОЛОЖЕННЫХ ВНУТРИ ТЕЛА
  Пусть внутри тела действует источник тепла постоянной мощ­ности Р. Введем следующие предположения: температура тела в любой момент времени одинакова во всех точках о

ОСНОВНОЙ ЗАКОН ТЕПЛОПРОВОДНОСТИ БИО - ФУРЬЕ
Основной закон теплопроводности математически описывается выражением (6.46)

ПЛОСКОСТЯМИ
Рассмотрим простейшие случаи, когда тепловой поток Ф и его плотность Ф0 не изменяются во времени (стационарное состояние) и в пространстве. Такой случай может иметь место при на

ПРОЦЕСС НАГРЕВА ПРИ КОРОТКОМ ЗАМЫКАНИИ. ПОНЯТИЕ 0 ТЕРМИЧЕСКОЙ УСТОЙЧИВОСТИ
Режим короткого замыкания в цепи большей частью является ава­рийным и его обычно ликвидируют за малые промежутки времени — секунды и доли секунды, однако, как ни мала длительность протека­ния токов

ЖИДКОМЕТАЛЛИЧЕСКИЕ КОНТАКТЫ
Наиболее характерные недостатки твердометаллических контактов следующие: 1.С ростом длительного номинального тока возрастают необходимое значение контактного нажатия, габариты и масса конт

ОБЩИЕ СВЕДЕНИЯ
Большая группа электрических аппаратов представле­на коммутационными устройствами, с помощью которых замыкается и размыкается электрическая цепь. Электриче­ский разряд, возникающий при размыкании к

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ ДУГ030Г0 РАЗРЯДА ПРИ ВЫСОКОЙ ПЛОТНОСТИ ГАЗОВОЙ СРЕДЫ
Явление прохождения электрического тока через газ, называемое газовым разрядом, может наблюдаться практически при любых значениях тока. На рис. 8.2 изображена вольтамперная характе­ристика последов

ГАШЕНИЕ ЭЛЕКТРИЧЕСКИХ ДУГ В ЦЕПЯХ ПОСТОЯННОГО ТОКА
  При размыкании контактов аппарата, находящегося в цепи пос­тоянного тока, возникает дуговой разряд. Для гашения возникающей дуги постоянного тока обычно стремятся повысить напряжени

УСЛОВИЯ ГАШЕНИЯ ДУГ ПЕРЕМЕННОГО ТОКА
  Дуга переменного тока обычно гасится легче, чем дуга постоянно­го тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения

А. Открытая дуга переменного тока при высоком напряжении источника
Открытая дуга переменного тока в моменты перехода тока через нуль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вслед­ствие перехода

Б. Дуга переменного тока в условиях активной деионизации
  Если столб дуги переменного тока подвергается интенсивной деионизации, то в этом случае механизм гашения дуги существенно меняется по сравнению с предыдущим (открытая дуга в цепи вы

В. Дуга переменного тока в условиях отключения цепей низкого напряжения
В установках низкого напряжения (до 1000 В) электрическое сопротивление столба дуги обычно бывает соизмеримым с сопротив­лением отключаемой цепи, а напряжение на дуге — с напряже­нием источн

ОБЩИЕ СВЕДЕНИЯ
Бесконтактными электроаппаратами называют устройства, предназначенные для включения, выключения или переключения (ком­мутации) электрических цепей без физического разрыва цепи. Осно

ДВУХПОЛУПЕРИОДНЫЕ СХЕМЫ МУС
Однополупериодная схема (рис. 10.6) практически не применяется из-за следующих недостатков: 1.Для ограничения наведенных в обмотке управления токов необходим балластный дроссель, наличие к

Статические параметры
а) Крутизна характеристики управления.Для МУС характерна зависимость выходного напряжения Up только от

ОБЩИЕ СВЕДЕНИЯ
  Предохранители — это электрические аппараты, предназначенные для зашиты электрических цепей от токовых перегрузок и токов КЗ. Основными элементами предохрани­теля являются плавкая в

НАГРЕВ ПЛАВКОЙ ВСТАВКИ ПРИ ДЛИТЕЛЬНОЙ НАГРУЗКЕ
Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чт

КОНСТРУКЦИЯ ПРЕДОХРАНИТЕЛЕЙ НИЗКОГО НАПРЯЖЕНИЯ
  а) Предохранители с гашением дуги в закрытом объеме. Предохранители на токи от 15 до 60 А имеют упрощенную конструкцию. Плавкая вставка 1 прижимается к латунной обойме 4

ВЫБОР ПРЕДОХРАНИТЕЛЕЙ
а) Выбор по условиям длительной эксплуатации и пус­ка.В процессе длительной эксплуатации температура на­грева предохранителя не должна превосходить допустимых значений. В этом случ

КОНТАКТНАЯ СИСТЕМА
Контакторы переменного то­ка выпускаются на токи от 100 до 630 А. Число главных контактов колеблется от одного до пяти. Это отражает­ся на конструкции всего аппарата в целом. Наиболее широко

ОБЩИЕ СВЕДЕНИЯ
  Реле – это электрический аппарат, в котором при плавном изменении входной (управляющей) величины происходит скачкообразное изменение выходной (управляемой) величины. Причём, хотя бы

Тепловое реле. Устройство, характеристики. Реле времени.
  1.ТЕПЛОВЫЕ РЕЛЕ.   Тепловые реле основаны на принципе изменения физических свойств тел при их нагревании электрическим током или другими источниками тепла. Он

ОБЩИЕ СВЕДЕНИЯ
В схемах защиты и автоматики часто требуется выдер­жка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в

Работу.
Принцип электромагнитного замедления рас­смотрен выше. Конструкция реле с таким замедлением типа РЭВ-800 (рис.14.11)содержит П-образный магнитопровод 1 и якорь 2 с немагнитн

ПОЛУПРОВОДНИКОВЫЕ РЕЛЕ
а) Общие сведения. Полупроводниковые реле в отноше­нии быстродействия, чувствительности, селективности и на­дежности превосходят электромагнитные. В ряде случаев полупроводниковые

Тиристорных элементов.

РЕГУЛИРУЮЩИЕ ПОЛУПРОВОДНИКОВЫЕ
УСТРОЙСТВА ПЕРЕМЕННОГО ТОКА (БКРПУ) а) Общие сведения.На основе тиристоров возможно осуществление следующих операций: 1) включение и отключение э

ОБЩИЕ СВЕДЕНИЯ
Для регулирования частоты вращения, вращающего мо­мента на валу, для соединения и разъединения ведущего и ведомого валов применяются электрические аппараты в виде муфт с электрическим управлением.

ЭЛЕКТРОМАГНИТНЫЕ ФРИКЦИОННЫЕ МУФТЫ
а) Принципдействия. Простейшая конструкция элект­ромагнитной фрикционной муфты представлена на рис. 14.3. Постоянное напряжение подводится к щеткам, скользящим по контактным кольца

ЭЛЕКТРОМАГНИТНЫЕ ФЕРРОПОРОШКОВЫЕ МУФТЫ
В ферропорошковой муфте барабанного типа (рис. 17.5) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3. Внутри цилиндра располагается э

ГИСТЕРЕЗИСНЫЕ МУФТЫ
Возможны два варианта исполнения гистерезисных муфт: в первом — магнитное поле индуктора создается об­моткой, во втором — постоянными магнитами. Недостатком первого варианта является наличие контак

Ограничители напряжения.
Назначение и классификация электрических аппаратов высокого напряжения Электрические аппараты высокого напряжения (АВН) исполь­зуются в электроэнергетических системах (объединенных и

ЗАКЛЮЧЕНИЕ
  Развитие науки и техники, научно-технические исследования предполагают развитие и совершенствование методов проектирования и расчета существующих, а также разработку новых электриче

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги