Реферат Курсовая Конспект
Моделирование экономических процессов в виде системы массового обслуживания - раздел Философия, Общее понятие имитационного моделирования экономических процессов В Системах Массового Обслуживания Различают Три Основных Этапа, Которые Прох...
|
В системах массового обслуживания различают три основных этапа, которые проходит каждая заявка:
1) появление заявки на входе в систему;
2) прохождение очереди;
3) процесс обслуживания, после которого заявка покидает систему.
На каждом этапе используются определенные характеристики, которые следует обсудить прежде, чем строить математические модели.
Характеристики входа:
1) число заявок на входе (размер популяции);
2) режим поступления заявок в систему обслуживания;
3) поведение клиентов.
Число заявок на входе. Число потенциально возможных заявок (размер популяции) может считаться либо бесконечным (неограниченная популяция), либо конечным (ограниченная популяция). Если число заявок, поступивших на вход системы с момента начала процесса обслуживания до любого заданного момента времени, является лишь малой частью потенциально возможного числа клиентов, популяция на входе рассматривается как неограниченная. Примеры неограниченных популяций: автомобили, проходящие через пропускные пункты на скоростных дорогах, покупатели в супермаркете и т.п. В большинстве моделей очередей на входе рассматриваются именно неограниченные популяции.
Если количество заявок, которые могут поступить в систему, сравнимо с числом заявок, уже находящихся в системе массового обслуживания, популяция считается ограниченной. Пример ограниченной популяции: компьютеры, принадлежащие конкретной организации и поступающие на обслуживание в ремонтную мастерскую.
Режим поступления заявок, в систему обслуживания. Заявки могут поступать в систему обслуживания в соответствии с определенным графиком (например, один пациент на прием к стоматологу каждые 15 мин, один автомобиль на конвейере каждые 20 мин) или случайным образом. Появления клиентов считаются случайными, если они независимы друг от друга и точно непредсказуемы. Часто в задачах массового обслуживания число появлений в единицу времени может быть оценено с помощью пуассоновского распределения вероятностей. При заданном темпе поступления (например, два клиента в час или четыре грузовика в минуту) дискретное распределение Пуассона описывается следующей формулой:
где р (х) — вероятность поступления х заявок в единицу времени;
х — число заявок в единицу времени;
l — среднее число заявок в единицу времени (темп поступления заявок);
е = 2,7182 — основание натурального логарифма.
Соответствующие значения вероятностей р(х) нетрудно определить с помощью таблицы пуассоновского распределения. Если, например, средний темп поступления заявок — два клиента в час, то вероятность того, что в течение часа в систему не поступит ни одной заявки, равна 0,135, вероятность появления одной заявки — около 0,27, двух — также около 0,27, три заявки могут появиться с вероятностью 0,18, четыре — с вероятностью около 0,09 и т.д. Вероятность того, что за час в систему поступят 9 заявок или более, близка нулю.
На практике вероятности появления заявок, разумеется, не всегда подчиняются пуассоновскому распределению (они могут иметь какое-то другое распределение). Поэтому требуется проводить предварительные исследования для того, чтобы проверить, что пуассоновское распределение может служить хорошей аппроксимацией.
Поведение клиентов. Большинство моделей очередей основывается на предположении, что поведение клиентов является стандартным, т.е. каждая поступающая в систему заявка встает в очередь, дожидается обслуживания и не покидает систему до тех пор, пока ее не обслужат. Другими словами, клиент (человек или машина), вставший в очередь, ждет до тех пор, пока он не будет обслужен, не покидает очередь и не переходит из одной очереди в другую.
Жизнь значительно сложнее. На практике клиенты могут покинуть очередь потому, что она оказалась слишком длинной. Может возникнуть и другая ситуация: клиенты дожидаются своей очереди, но по каким-то причинам уходят необслуженными. Эти случаи также являются предметом теории массового обслуживания, однако здесь не рассматриваются.
Характеристики очереди:
1) длина;
2) правило обслуживания.
Длина очереди. Длина может быть ограничена либо не ограничена. Длина очереди (очередь) ограничена, если она по каким-либо причинам (например, из-за физических ограничений) не может увеличиваться до бесконечности. Если очередь достигает своего максимального размера, то следующая заявка в систему не допускается и происходит отказ. Длина очереди не ограничена, если в очереди может находиться любое число заявок. Например, очередь автомобилей на бензозаправке.
Правило обслуживания. Большинство реальных систем использует правило «первым пришел — первым ушел» (FIFO — first in, first out). В некоторых случаях, например в приемном покое больницы, в дополнение к этому правилу могут устанавливаться различные приоритеты. Пациент с инфарктом в критическом состоянии, по-видимому, будет иметь приоритет в обслуживании по сравнению с пациентом, сломавшим палец. Порядок запуска компьютерных программ — другой пример установления приоритетов в обслуживании.
Характеристики процесса обслуживания:
1) конфигурация системы обслуживания (число каналов и число фаз обслуживания);
2) режим обслуживания.
Конфигурация системы обслуживания. Системы обслуживания различаются по числу каналов обслуживания. Обычно количество каналов можно определить как число клиентов, обслуживание которых может быть начато одновременно, например: число мастеров в парикмахерской. Примеры одноканальной системы обслуживания: банк, в котором открыто единственное окошко для обслуживания клиентов, или ресторан, обслуживающий клиентов в автомобилях. Если же в банке открыто несколько окошек для обслуживания, клиент ожидает в общей очереди и подходит к первому освободившемуся окну, то мы имеем дело с многоканальной однофазовой системой обслуживания. Большинство банков, также, как почтовые отделения и авиакассы, являются многоканальными системами обслуживания.
Другая характеристика — число фаз (или последовательных этапов) обслуживания одного клиента. Однофазовыми являются такие системы, в которых клиент обслуживается в одном пункте (на одном рабочем месте), затем покидает систему. Ресторан для обслуживания автомобилей, в котором официант получает деньги и приносит заказ в автомобиль, является примером однофазовой системы. Если же в ресторане нужно сделать заказ в одном месте, оплатить его в другом и получить пищу в третьем, то мы имеем дело с многофазовой (три фазы) системой обслуживания.
На рис. 1 приведены системы обслуживания различной конфигурации.
Рис. 1
Режим обслуживания. Как и режим поступления заявок, режим обслуживания может характеризоваться либо постоянным, либо случайным временем обслуживания. При постоянном времени на обслуживание любого клиента затрачивается одинаковое время. Такая ситуация может наблюдаться на автоматической мойке автомобилей. Однако более часто встречаются ситуации, когда время обслуживания имеет случайное распределение. Во многих случаях можно предположить, что время обслуживания подчиняется экспоненциальному распределению с функцией распределения
F(t) = p(t< t) =1 – е–tm, где р (t < t) — вероятность того, что фактическое время t обслуживания заявки не превысит заданной величины t;
m — среднее число заявок, обслуживаемых в единицу времени;
е = 2,7182 — основание натурального логарифма.
Параметры моделей очередей. При анализе систем массового обслуживания используются технические и экономические характеристики.
Наиболее часто используются следующиетехнические характеристики:
1) среднее время, которое клиент проводит в очереди;
2) средняя длина очереди;
3) среднее время, которое клиент проводит в системе обслуживания (время ожидания плюс время обслуживания);
4) среднее число клиентов в системе обслуживания;
5) вероятность того, что система обслуживания окажется незанятой;
6) вероятность определенного числа клиентов в системе.
Средиэкономических характеристик наибольший интерес представляют следующие:
1) издержки ожидания в очереди;
2) издержки ожидания в системе;
3) издержки обслуживания.
Модели систем массового обслуживания. В зависимости от сочетания приведенных выше характеристик могут рассматриваться различные модели систем массового обслуживания.
Здесь мы ознакомимся с несколькими наиболее известными моделями. Все они имеют следующие общие характеристики:
а) пуассоновское распределение вероятностей поступления заявок;
б) стандартное поведение клиентов;
в) правило обслуживания FIFO (первым пришел — первым обслужен);
г) единственная фаза обслуживания.
I. Модель А — модель одноканальной системы массового обслуживания М/М/1 с пуассоновским входным потоком заявок и экспоненциальным временем обслуживания.
Наиболее часто встречаются задачи массового обслуживания с единственным каналом. В этом случае клиенты формируют одну очередь к единственному пункту обслуживания. Предположим, что для систем этого типа выполняются следующие условия:
1. Заявки обслуживаются по принципу «первым пришел — первым обслужен» (FIFO), причем каждый клиент ожидает своей очереди до конца независимо от длины очереди.
2. Появления заявок являются независимыми событиями, однако среднее число заявок, поступающих в единицу времени, неизменно.
3. Процесс поступления заявок описывается пуассоновским распределением, причем заявки поступают из неограниченного множества.
4. Время обслуживания описывается экспоненциальным распределением вероятностей.
5. Темп обслуживания выше темпа поступления заявок.
Пусть l — число заявок в единицу времени;
m — число клиентов, обслуживаемых в единицу времени;
п — число заявок в системе.
Тогда система массового обслуживания описывается уравнениями, приведенными ниже.
Формулы для описания системы М/М/1:
— среднее число клиентов в системе;
— среднее время обслуживания одного клиента в системе (время ожидания плюс время обслуживания);
— среднее число клиентов в очереди;
— среднее время ожидания клиента в очереди;
— характеристика загруженности системы (доля времени, в течение которого система занята обслуживанием);
— вероятность отсутствия заявок в системе;
— вероятность того, что в системе находится более чем k заявок.
II. Модель В — многоканальная система обслуживания M/M/S. В многоканальной системе для обслуживания открыты два канала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслуживания.
Пример такой многоканальной однофазовой системы можно увидеть во многих банках: из общей очереди клиенты обращаются в первое освободившееся окошко для обслуживания.
В многоканальной системе поток заявок подчиняется пуассоновскому закону, а время обслуживания — экспоненциальному. Приходящий первым обслуживается первым, и все каналы обслуживания работают в одинаковом темпе. Формулы, описывающие модель В, достаточно сложны для использования. Для расчета параметров многоканальной системы обслуживания удобно использовать соответствующее программное обеспечение.
Для многоканальной системы с неограниченной очередью должно выполняться условие < 1, где r — параметр загрузки системы (среднее число занятых каналов), п — минимальное количество каналов, при котором очередь не будет расти до бесконечности. В противном случае предельные вероятности существовать не могут.
Формулы для описания системы M/M/S:
— вероятность того, что система свободна;
— вероятность того, что в системе находится п заявок;
— вероятность того, что заявка окажется в очереди;
— среднее число занятых каналов;
— среднее число заявок в очереди;
— среднее число заявок в системе;
— время нахождения заявки в очереди;
— время нахождения заявки в системе.
III. Модель С— модель с постоянным временем обслуживания M/D/1.
Некоторые системы имеют постоянное, а не экспоненциально распределенное время обслуживания. В таких системах клиенты обслуживаются в течение фиксированного периода времени, как, например, на автоматической мойке автомобилей. Для модели С с постоянным темпом обслуживания значения величин Lq и Wq вдвое меньше, чем соответствующие значения в модели А, имеющей переменный темп обслуживания.
Формулы, описывающие модель С:
— средняя длина очереди;
— среднее время ожидания в очереди;
— среднее число клиентов в системе;
— среднее время ожидания в системе.
IV. Модель D — модель с ограниченной популяцией.
Если число потенциальных клиентов системы обслуживания ограничено, мы имеем дело со специальной моделью. Такая задача может возникнуть, например, если речь идет об обслуживании оборудования фабрики, имеющей пять станков.
Особенность этой модели по сравнению с тремя рассмотренными ранее в том, что существует взаимозависимость между длиной очереди и темпом поступления заявок.
V. Модель Е — модель с ограниченной очередью. Модель отличается от предыдущих тем, что число мест в очереди ограничено. В этом случае заявка, прибывшая в систему, когда все каналы и места в очереди заняты, покидает систему необслуженной, т.е. получает отказ.
Как частный случай модели с ограниченной очередью можно рассматривать модель с отказами, если количество мест в очереди сократить до нуля.
Сравнительная характеристика различных моделей систем массового обслуживания приведена в следующей таблице:
– Конец работы –
Эта тема принадлежит разделу:
Основные понятия... Объектно ориентированное моделирование ООМ предполагает поддержку классов и... Класс определяет некоторый шаблон или прототип блока например бассейн вообще Оперируя с классом например Бассейн...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Моделирование экономических процессов в виде системы массового обслуживания
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов