рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Исходная структура аустенита.

Исходная структура аустенита. - раздел Образование, МАТЕРИАЛОВЕДЕНИЕ Увеличение Размера Зерна (Рис. 11) Приводит К Повышению Устойчивости Аустенит...

Увеличение размера зерна (рис. 11) приводит к повышению устойчивости аустенита вследствие уменьшения суммарной протяженности границ зерна, где происходит зарождение новой фазы, а, следовательно, ‑ к снижению критической скорости закалки.

 

В зависимости от состава стали скорость охлаждения при закалке должна быть достаточной, чтобы предотвратить распад аустенита, а для легированных сталей – и возможность бейнитного превращения.

 

Однако быстрое охлаждение требуется не во всем интервале температур (от температуры нагрева до комнатной температуры), а только в пределах 650-4000С, т.е. в том интервале температур, в котором аустенит менее всего устойчив и быстрее всего превращается в феррито-цементитную смесь.

 

Выше 6500С скорость превращения аустенита мала, поэтому при закалке в этом интервале температур сталь можно охлаждать медленно, но, конечно, не настолько, чтобы началось выпадение феррита или превращение аустенита в перлит.

 

Интервал 650-4000С должен быть пройден быстро.

 

В углеродистой стали ниже 4000С вновь начинается зона относительной устойчивости аустенита.

 

Наконец, в мартенситном интервале, начиная с 200-3000С, особенно желательно замедленное охлаждение, чтобы к значительным структурным напряжениям не прибавились термические напряжения, возникающие в результате быстрого охлаждения. Практически таких охлаждающих сред нет.

 

Механизм охлаждения стали в жидкости заключается в следующем:

- в первый момент охлаждения образуется тонкая пленка перегретого пара, которая является плохим проводником тепла и снижает скорость охлаждения. Первый этап относительного медленного охлаждения называется стадией пленочного кипения;

 

- когда количество теплоты, отнимаемой жидкостью, больше количества теплоты, излучаемой нагретым телом, пленка разрывается и дальнейшее охлаждение происходит парообразованием на поверхности металла (стадия пузырчатого кипения);

 

- поскольку на парообразование расходуется большое количество теплоты, то поверхность изделия охлаждается очень интенсивно и температура ее быстро падает. Когда температура поверхности достигает температуры кипения жидкости, охлаждение происходит теплоотдачей и значительно замедляется (стадия конвективного теплообмена).

 

В качестве охлаждающих сред применяют воду, водные и другие масла, расплавленные соли и металлы, и в ряде случаев – воздух. (табл. 4).

 

В качестве охлаждающей среды при закалке углеродистых сталей, содержащих больше 0,3% углерода применяется вода.

 

Углеродистые стали, содержащие меньше 0,3% углерода, фактически не закаливаются, т.к. при охлаждении в любой реальной среде нельзя получить скорость охлаждения больше критической, поэтому аустенит частично или полностью будет распадаться на феррито-цементитную смесь. Только в малых сечениях деталей из малоуглеродистых сталей, содержащих меньше 0,3% углерода можно получить закаленную структуру (мартенсит).

 

Положительным свойством воды является быстрое охлаждение в районе наименьшей устойчивости аустенита (600 – 5000С).

 

Таблица 4

Охлаждающая способность различных закалочных сред в интервалах температур перлитного превращения и около мартенситной точки стали

Охлаждающая среда Скорость охлаждения, град/с в интервале температур 0С
650-450 300-200
Вода при 180С
Вода при 280С
Вода при 500С
Вода при 740С
Вода+10% едкого натра при 180С
Вода+10% поваренной соли при 180С
Вода+10% серной кислоты при 180С
Вода мыльная при 180С
Вода дистиллированная
Эмульсия масла в воде
Машинное масло
Керосин 160-180 40-60
Медные плиты
Железные плиты
Спокойный воздух -

 

Основные недостатки воды – большая скорость охлаждения в районе мартенситного превращения (300 – 2000С) и резкое снижение охлаждающей способности с повышением температуры воды. В тоже время она неизменна в мартенситной области. Поэтому при закалке значительного количества металла в ванне с неподвижной водой охлаждающая способность ее с течением времени ухудшается.

 

Большое значение имеет относительное движение изделия и охлаждающей жидкости. Чем больше относительная скорость движения детали охлаждающей жидкости, тем легче разрывается пленка и быстрее охлаждается деталь.

Охлаждающую способность воды при температуре 650-450°С можно изменять в широких пределах, вводя различные добавки. Однако в области мартенситного превращения она во всех случаях остается высокой. Для повышения охлаждающей способности в воду вводят поваренную соль NaCl, едкий натр NaOH и др. Они уменьшают возможность образования паровой пленки и способствуют более быстрому ее разрушению. Процесс кипения происходит более равномерно, чем в воде без добавок. С повышением температуры воды с добавками скорость охлаждения снижается менее интенсивно.

 

Масло как охлаждающая среда применяется при закалке легированных сталей. Масло в районе наименьшей устойчивости аустенита охлаждает примерно в 3 раза, а в районе мартенситных превращений в 10-15 раз медленнее, чем вода. Это основное его преимущество. Закаливающая способность масла слабо меняется с повышением его температуры. Основным недостатком масла является малая скорость охлаждения в районе температур наименьшей устойчивости аустенита, что не позволяет применять масло в качестве закалочной среды при закалке средне- и высокоуглеродистых сталей, т.к. для этих сталей оно не обеспечивает скорость охлаждения больше критической. К недостаткам масла как закалочной среды также относятся: огнеопасность (при нагреве выше 250-300°С оно может загореться); постепенное загустение (вызывает снижение закаливающей способности) и пригорание масла на детали.

 

Таким образом, все применяемые реальные охлаждающие среды не могут полностью удовлетворить требования, предъявляемые к идеальному охладителю. В зависимости от состава стали, формы и размеров детали и требуемых в термически обработанной детали свойств следует выбирать оптимальный способ закалки, наиболее просто осуществляемый и одновременно обеспечивающий нужные свойства.

 

Чем сложнее форма термически обрабатываемой детали, тем тщательнее следует выбирать условия охлаждения, потому что чем сложнее деталь, тем большие внутренние напряжения возникают в ней при охлаждении.

Чем больше углерода содержит сталь, тем больше объемные изменения при превращении, тем при более низкой температуре происходит превращение аустенита в мартенсит; больше опасность возникновения деформаций, трещин, напряжений и других закалочных пороков; тщательнее следует выбирать условия закалочного охлаждения для такой стали.

Основные способы закалки:

1. Закалка в одном охладителе (рис. 25, режим 2) ‑ наиболее простой способ. Для закалки мелких деталей сечением до 5 мм из углеродистых сталей и деталей из легированных сталей применяют масло. Для более крупных, но простых по форме деталей из углеродистой стали в качестве закаливающей среды применяют воду или водные растворы солей и щелочей. В качестве закалочных сред при этом способе рекомендуются: в инструментальном производстве 5-15%-ный раствор NaCl в воде; для изделий сложной формы, склонных к короблению и трещинообразованию - 40-50%-ннй раствор NaOH в воде. Эти растворы обеспечивают скорость охлаждения при температурах 650-450°С до 1400°/с; при температурах 300-200°С скорость их охлаждения приближается к скорости охлаждения в масле.

Рис. 25. Схема охлаждения при различных способах закалки:

1 – идеальный режим охлаждения; 2 – непрерывная закалка в одном охладителе; 3 – прерывистая закалка в двух средах; 4 – ступенчатая закалка; 5 –изотермическая закалка.

Для крупных изделий сложной формы, изготовленных из легированных сталей с большой устойчивостью аустенита, типичными закалочными средами являются чистые минеральные масла или их смеси.

 

2. Прерывистая закалка в двух средах (рис.25, режим 3) этот метод заключается в предварительном охлаждении детали в быстро охлаждающей среде (например, в воде) до температуры 300°C с последующим охлаждением в более мягкой среде (напримep, в масле). При закалке в масле крупных изделий целесообразно производить также прерывистое охлаждение с окончательным охлаждением на воздухе.

 

Прерывистая закалка в двух средах обеспечивает приближение к оптимальному режиму охлаждения 1 (рис.25). Недостатком ее является трудность установления момента переноса изделия из одной среды в другую для разностенных изделий. Этот способ требует от термиста высокой квалификации.

 

3. Ступенчатая закалка (рис. 25, режим 4). При этом способе деталь, после нагрева переносят в расплавы солей, имеющие температуру немногим более высокую, чем температура начала мартенситного превращения (точка Мн) для данной стали. После выдержки при данной температуре в течение времени необходимого для выравнивания температуры по всему сечению, деталь вынимают из соляной ванны и охлаждают на воздухе. Мартенситное превращение в этом случае происходит на воздухе.

 

В качестве охлаждающей среды при ступенчатой закалке применяют смеси легкоплавких солей, например: смесь, состоящую из 55% азотнокислого калия (KNO3) и 45% азотисто-кислого натрия (NaNO3) - температура плавления 137°С; смесь, состоящую из 75% едкого калия (КОН ) и 25% едкого натрия (NaOH) - температура плавления 150°С и др.

 

По сравнению с обычной закалкой в одной среде при ступенчатой закалке возникают значительно меньшие внутренние напряжения, уменьшается коробление и возможность возникновения трещин. Используя возникающий при распаде аустенита в мартенсит эффект ''сверхпластичности", в это время производят правку (рихтовку) изделий. Применение ступенчатой закалки ограничивается размерами деталей: до 10-12 мм для деталей из углеродистой стали и до 20-30 мм для деталей из легированных сталей.

 

4. Изотермическая закалка (рис.25, режим 5). Отличием этого вида закалки от ступенчатой является длительность выдержки выше точки Мн в нижней части области промежуточного превращения. Время выдержки должно быть достаточным для превращения аустенита в нижний бейнит. При промежуточном превращении легированных сталей наряду с бейнитом сохраняется остаточный аустенит (10-20%). Такая структура обеспечивает высокую прочность, пластичность и вязкость стали, т.е. ее высокую конструкционную прочность. Значительно снижается деформация изделий вследствие ликвидации термических напряжений. Фазовые (структурные напряжения) также уменьшаются в связи с тем, что превращение аустенита в бейнит происходят постепенно, в течение длительного времени. Изотермической закалке на бейнит подвергают обычно среднеуглеродистые легированные стали, от которых требуется повышенная вязкость (ударно-режущий инструмент).

 

Средой для охлаждения при изотермической закалке обычно являются расплавленные соли и щелочи разных составов. Охлаждение в расплавах щелочей, если предварительно детали нагревались в жидких солях, позволяет получить чистую поверхность светло-серого цвета. Такой способ закалки называется "светлой закалкой".

 

5. Закалка с самоотпуском применяется для инструментов типа зубил, пуансонов, у которых рабочая часть должна иметь высокую твердость, а нерабочая - более низкую. Эту закалку выполняют двумя способами. 1) Сначала охлаждают только рабочую часть инструмента, затем производят отпуск её по цветам побежалости. После достижения требуемого цвета побежалости инструмент полностью охлаждают в воде. 2) Изделие полностью охлаждают, затем нагревают нерабочую часть в соляной или в песочной ванне. За счет теплопроводности происходит нагрев рабочей части. Когда цвет побежалости на ней достигнет заданного, весь инструмент быстро охлаждают. Твердость постепенно снижается от рабочей к нерабочей части.

 

6. Струйчатая закалка заключается в охлаждении рабочей части изделия интенсивной струей воды. Ее применяют в том случае, когда требуется закалить часть детали.

 

Как уже указывалось, в закаленной стали, особенно содержащей более 0,6% С, всегда присутствует остаточный аустенит. Аустенит понижает твердость, износостойкость и нередко приводит к изменению размеров деталей, работающих при низких температурах, в результате самопроизвольного превращения аустенита в мартенсит.

 

Для уменьшения количества остаточного аустенита в закаленной стали применяют обработку холодом, заключающуюся в охлаждении закаленной стали до температур ниже нуля. Обработку холодом применяют для сталей, температура окончания мартенситного превращения Мк, которых лежит ниже 0°С. Практически охлаждение проводится до температур ‑ 20-100°С, что вызывает превращение остаточного аустенита в мартенсит и повышает твердость сталей на 1-4 ед.

 

Выдержка стали после закалки при комнатной температуре более 3-6 ч. стабилизирует аустенит, в результате чего он менее полно превращается в мартенсит при дальнейшем охлаждении и уменьшает эффект обработки холодом. Поэтому обработку холодом выполняют сразу после закалки.

 

Обработку холодом применяют для режущего инструмента с целью повышения его твердости, стойкости и производительности; для измерительного инструмента ‑ с целью достижения возможно более полной стабилизации размеров.

 

Неправильно проведенная закалка может вызвать различные дефекты. Наиболее распространенные из них: закалочные трещины, деформация, коробление, повышенная хрупкость, недостаточная твердость, мягкие пятна.

 

Закалочные трещины являются результатом резкого охлаждения или нагрева вследствие возникающих при этом внутренних напряжений - как термических, так и структурных. Трещины - неисправимый брак. Для предупреждения их образования рекомендуется избегать при конструировании деталей резких переходов от толстых сечений к тонким, острых углов, резких выступов; обеспечивать медленное охлаждение в области мартенситного превращения.

 

Предотвращение деформации (изменение объема) и коробления (изменение внешней формы) обеспечивается медленным охлаждением в интервале мартенситного превращения. В атом случае необходимо применять ступенчатую и изотермическую закалки. Уменьшение коробления достигается также правильным способом погружения детали в охлаждающую жидкость, например, длинные стержневые детали необходимо охлаждать в вертикальном положении.

 

Повышенная хрупкость получается в том случае, если сталь была нагрета до температуры, намного выше критической или при оптимальной температуре была дана очень большая выдержка.

 

При перегревепроисходит рост зерна аустенита, а после закалки образуется крупноигольчатый мартенсит, который характеризуется чрезмерной хрупкостью. Устраняют дефект отжигом и последующей закалкой с соблюдением заданного режима.

 

Недостаточная твердость закаленной детали объясняется недогревом (низкая температура в печи, недостаточная выдержка при правильной температуре в печи) или недостаточно интенсивным охлаждением. В первом случае мартенсит не обладает достаточной твердостью (не содержит достаточно углерода); во втором - не переохлаждается до мартенситного превращения, и структура полностью или частично состоит из продуктов перлитного распада аустенита (троостит, сорбит).

Повышение температуры печи или увеличение выдержи в первом случае устраняет пониженную твердость закаленных деталей. Во втором случае следует применять более интенсивное охлаждение, т.е. во время закалки энергично перемещать деталь в закалочной жидкости или применять вместо простой воды соленую или подкисленную.

 

При наличии на поверхности детали окалины или загрязнения, соприкосновении деталей друг с другом в процессе охлаждения, неравномерном охлаждении, неоднородной структуре стали (полосчатость, скопления феррита), загрязнении стали неметаллическими включениями в некоторых зонах детали вместо мартенсита образуется троостит или сорбит и твердость детали получается неравномерной (возникают мягкие пятна). Избежать этого дефекта можно путем выбора правильного способа охлаждения, проведения предварительной термической обработки и т.д.

 

– Конец работы –

Эта тема принадлежит разделу:

МАТЕРИАЛОВЕДЕНИЕ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Исходная структура аустенита.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Минск 2008
УДК 620.22(076.5) ББК 30.3я73 В 38    

Вершина, А.К.
В 38 Материаловедение, раздел «Термическая обработка»: лабораторный практикум по одноименному курсу для студентов технологических и химических специальностей / А.К. Вершина, Н. А. Свидунович, Д. В.

I.I. Компоненты железоуглеродистых сплавов и их взаимодействие
Основные компоненты сталей и чугунов - железо и углерод. Железо - металл серебристо-белого цвета, атомный радиус - 0,127 нм (1нм=10Å=10-7

Составляющие железоуглеродистых сплавов
В зависимости от внешних условий углерод в равновесии с жидким или твердым растворами железа может находиться в виде графита и цементита (карбида железа).   Наиболее устойчив

Углеродистые стали в равновесном состоянии
  Железоуглеродистые сплавы, содержащие до 2.14 % углерода, называются сталями.   Классификацию углеродистых сталей про

Инструментальные- от 0,7% С и выше.
Конструкционные углеродистые стали изготавливают следующих марок: 05кп, 10кп, 10, 15кп, 15, ... ..., 30, 35, 40, 45, ..., 85.   В этих сталях цифры показывают с

Технологические свойства углеродистой стали и область ее применения
  Отдельные изделия изготовляют обработкой резанием, ковкой, штамповкой, сваркой, литьём. Поведение сталей при обработке (технологические свойства) влияет на их качество, себестоимост

Закалка стали
  Цель работы: практическое ознакомление с операциями термической обработки; изучение влияния режимов термической обработки на свойства и структуру конструкционно

Химический состав стали.
  Легирующие элементы (Мо, Ni, Cr, Mn и др.), находящиеся в твердом растворе, обычно увеличивают устойчивость аустенита и понижают критическую скорость закалки. Исключение составляет

Порядок выполнения работы
Для выполнения работы студентам предоставляются образцы различных марок углеродистых сталей (сталь 40, У8, У10), печи для нагрева образцов и баки с охлаждающими средами.   Из

Отпуск стали
  Цель работы: практическое ознакомление с операцией термической обработки сталей – отпуском, изучение влияния различных видов отпуска на структуру и механические

Влияние легирующих элементов
  На диффузионные процессы, происходящие при отпуске закаленной стали, оказывают существенное влияние легирующие элементы. Они не только сами обладают малой диффузионной подвижностью,

Порядок выполнения работы
  Для выполнения работы студентам предоставляют образцы закаленных сталей, печи для нагрева образцов.   Студенты должны: 1) замерить твердость закаленн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги