рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные положения

Основные положения - раздел Образование, МЕТОДИЧЕСКИЕ УКАЗАНИЯ Техническая Характеристика Сварного Трансформатора Тд-300 (Т - Трансформатор;...

Техническая характеристика сварного трансформатора ТД-300 (Т - трансформатор; Д – дуговой) «300» - максимальный из номинальных сварочный ток Iсв.mах = 300 А (из номинальных, т.е. рекомендованных величин тока при продолжительности сварки ПР=60%). Таким образом, рекомендуются номинальные (рабочие) сварочные токи Iсв ≤ 300 А.

ПР – повторно-кратковременный режим (отношение продолжительности рабочего периода (собственно сварки) к продолжительности цикла сварки. Продолжительность цикла сварки равна сумме времени сварки рабочего периода и холостого хода, когда оборудование подключено к сети, но сварка не ведётся.

ТД-300 служит для питания одного сварочного поста при ручной дуговой сварке, резке и наплавке металлов переменным током промышленной частоты (50 Гц).

Толщина свариваемых кромок - от 3 до 14 мм и более. Сварка производится электродами диаметром от 3 до 8 мм.

 

Максимальный рабочий сварочный ток 300 А
Пределы регулирования сварочного тока:  
при диапазоне малых токов 60-160 А
при диапазоне больших токов 160-385 А
Номинальное первичное напряжение 380 В
Первичный ток 53,5 А
Вторичное напряжение (холостого хода):  
при диапазоне малых токов 78 В
при диапазоне больших токов 60 В
Условное номинальное рабочее напряжение под нагрузкой  
(при длине дуги 5 мм) 32 В
Потребляемая мощность 20,5 кВт

 

Сварочные трансформаторы просты по устройству и в эксплуатации, имеют более высокий КПД, чем генераторы постоянного тока, способны работать непосредственно от силовой сети переменного тока.

Основные требования к сварочным трансформаторам:

1) наличие падающей внешней характеристики;

2) обеспечение постоянных по величине тока и напряжения.

Внешней характеристикой любой электрической машины называется зависимость напряжения от силы тока на ее зажимах. Различают жесткие, падающие и возрастающие внешние характеристики (рис. 1).

При работе на жестких характеристиках по мере увеличения нагрузки во внешней цепи напряжение не изменяется (осветительная, силовая цепь). Во время коротких замыканий в такой сети сила тока достигает больших величин, что ведет к перегоранию предохранителей или загоранию проводов.

Возрастающие характеристики применяются при автоматической сварке. При ручной дуговой сварке используются аппараты только с падающими характеристиками, так как только они способны ограничить токи короткого замыкания, весьма часто возникающие в процессе сварки. Режим короткого замыкания имеет место в момент возбуждения дуги сварщиком путем касания электродом изделия, через каплю металла, накоротко замыкающую дуговой промежуток и т.д., то есть является равноправным с рабочим режимом.

Если бы у сварочных аппаратов не было падающих характеристик, то обмотки трансформаторов воспламенялись бы в случае отказа предохранителей.

Сварочные трансформаторы являются понижающими и так же, как обычные основаны на принципе магнитной индукции. Однако они отличаются от обычных трансформаторов тем, что для получения падающих характеристик в их вторичную, то есть сварочную цепь, включена катушка индуктивности - так называемый дроссель. Дроссель вырабатывает ЭДС самоиндукции, направленную противоположно наводимой ЭДС индукции со стороны первичной обмотки и взаимодействует с нею алгебраически. Чем больше ток в сварочной цепи, тем больше противо-ЭДС и тем меньше суммарное напряжение. При максимально возможном токе - токе короткого замыкания - суммарное напряжение равно нулю, а на оси «I» отсекается отрезок величины тока короткого замыкания Iкз.

При обрыве сварочной дуги противо - ЭДС становится равной нулю, и таким образом, в отсутствие тока в цепи напряжением снова станет равным ЭДС индукции, то есть напряжение холостого хода Uxx (отрезок на оси «U» - рис. 1).

Рисунок 1 - Внешние характеристики: 1 – жесткая; 2 – возрастающая; 3 – падающая

 

Для регулирования потока самоиндукции магнитопровод в дросселях делают разъемным с регулируемым воздушным зазором. Изменяя величину воздушного зазора, можно получить бесчисленное множество внешних характеристик трансформатора и столько же величин сварочного тока Iсв, т.е. можно регулировать (менять или задавать) величину Iсв.

Однако ТД-300 относится к группе трансформаторов с повышенным рассеянием магнитного потока, роль дросселя в которых выполняют подвижные катушки вторичной обмотки. При сближении первичной и вторичной обмоток достигается уменьшение индуктивности рассеяния, что приводит к уменьшению суммарного напряжения (противо-ЭДС рассеялось немного, и ее вычитание из основной ЭДС дает малое суммарное напряжение) и увеличению сварочного тока. Увеличением же расстояния между обмотками достигается увеличение рассеяния и уменьшение сварочного или настроечного тока. Поэтому такие трансформаторы называют трансформаторами с повышенным магнитным рассеянием. Таким образом, эти трансформаторы способны выработать бесчисленное множество внешних характеристик (рис. 2) и столько же величин сварочных токов.

 

 

 

Рисунок 2 - Внешние характеристики сварочного трансформатора для ручной дуговой сварки (а – крутопадающая; б – пологопадающая)

 

Упрощенная схема трансформатора с повышенным рассеянием магнитного потока представлена на рис. 3.

 

Рисунок 3 - Упрощенная схема сварочного трансформатора с повышенным рассеянием магнитного потока

 

Сварочный трансформатор состоит из следующих основных узлов: магнитопровода (1); первичной обмотки (2); вторичной обмотки (3).

Сварочная цепь 5 включает в себя вторичную обмотку, электрододержатель 4 и сварочный столик 6.

Через верхнее ярмо трансформатора пропущен ходовой винт 7, опирающийся на подпятник 8. Ходовой винт ввинчивается в ходовую гайку 9, вмонтированную в траверсу подвижной вторичной обмотки. При вращении ходового винта, осуществляемом с помощью рукоятки 10, находящейся сверху трансформатора, перемещается вторичная обмотка, и тем самым изменяется расстояние между обмотками (регулируется величина сварочного тока).

На рис. 3 показано параллельное соединение парных катушек в первичной и вторичной обмотках. При такой схеме подключения получают диапазон больших настроечных токов (160-365 А).

Если катушки соединить между собой (попарно) последовательно, то получится диапазон малых настроечных токов (60…160 А), который с успехом можно использовать при сварке тонких листов и т. п.

Диапазоны тока (на последовательное или параллельное соединение катушек) обеспечиваются переключателем барабанного типа, рукоятка которого выведена на крышку трансформатора (на рис. 3 не указана).

Проведение эксперимента

Источник питания и сварочная дуга представляют собой единую энергетическую систему. Это означает равенство токов и напряжения на дуге и зажимах трансформатора. Однако характер проводимости в этих участках единой цепи различен, поскольку дуга является проводником второго рода (с ионной проводимостью), а трансформатор - первого рода (с электронной проводимостью).

Важным различием их является то, что при повышении температуры проводника второго рода его проводимость увеличивается, а первого рода - снижается.

В электрических цепях наиболее сильное влияние на повышение температуры в в проводниках оказывает сила тока. Согласно закону Джоуля – Ленца, (калорий)

 

Q=0,24I2×Rt, (1)

 

где Q - количество тепла;

0,24 - тепловой эквивалент;

I- сила сварочного тока, А;

R - сопротивление, Ом;

t - время, с.

 

Квадратичная зависимость между током и тепловыделением показывает, что даже небольшие изменения силы сварочного тока могут вызвать резкие колебания скорости оплавления электрода, привести к неровностям наплавки и нарушению расчетного сечения сварного шва, т.е. к браку.

Сварочная дуга также имеет свою внешнюю характеристику, которую называют статической вольт-амперной характеристикой. Статической она называется потому, что справедлива только для одной ее длины. Если изменить длину дуги, то получится новая вольтамперная характеристика. Таким образом, и дуга может иметь бесчисленное множество характеристик (рис. 4).

Напряжение на дуге

Uд=aка+blg, (2)

 

где aка - сумма напряжений в катодной и анодной областях (aка=10 В);

b - падение напряжения в столбе дуги (b = 2 В/1 мм дуги);

lg - длина дуги, мм, lg = 2...5...8.

 

На рис. 4 видно, что при ручной дуговой сварке, характеризующейся применением токов в диапазоне 80...1000 А, напряжение не зависит от силы тока. Однако оно сильно зависит от длины дуги (по вертикали, т. е. от ее сопротивления).

Рабочие режимы сварки при данной длине дуги и данном настроечном токе определяют путем наложения вольт-амперной характеристики дуги на внешнюю характеристику источника питания и нахождения точек их пересечения (рис. 5, точки 1 и 2).

Предположим, что при одном и том же настроечном токе трансформатора, которому соответствует внешняя характеристика на рис. 5, длина дуги изменяется на 5 мм, что соответствует изменению напряжения дуги на 10 В. Поскольку сварка на режимах точек 1 и 1` никогда не ведется из-за слишком малых токов и неустойчивого состояния дуг, необходимо определить какое изменение тока в сварочной цепи получится при уменьшении длины дуги на 5 мм при переходе от режима точки 2 (I2; U2) к режиму точки 2` (I2`; U2`). Разность DI и составит искомую величину разбаланса тока в сварочной цепи.

 

 

Рисунок 4 - Статическая вольт-амперная характеристика сварочной дуги (l – длина дуги; l1> l2> l3)

 

– Конец работы –

Эта тема принадлежит разделу:

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Департамент кадровой политики и образования... Челябинский государственный агроинженерный... университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные положения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
к выполнению лабораторных работ по разделам «Материаловедение» и «Технология конструкционных материалов»     Для студентов 1, 2 и 3 курсов фак

Основные положения
Углеродистая сталь - это многокомпонентный сплав железа с углеродом, содержащий 0,02...2,14% углерода и некоторое количество постоянных и случайных примесей. Углеродистые стали широко прим

Стали и сплавы с особыми свойствами
Коррозионностойкие (нержавеющие) стали, ГОСТ 5632-72 обладают высокой стойкостью против коррозии в агрессивных средах (влажная атмосфера, кислоты, морская вода и т.п.), обязательно

При защите лабораторной работы необходимо ответить на следующие вопросы.
Как влияет углерод на механические и технологические свойства стали? Назовите полезные примеси в стали. Почему сера, фосфор, кислород и водород относятся к вредным примесям?

Основные положения
В данной лабораторной работе изучаются следующие методы металлографического анализа: 1. Фрактография 2. Макроанализ 3. Микроанализ Фрактография -

Основные положения
Твердость - это способность материала сопротивляться проникновению в него под статической нагрузкой другого, более твердого тела (наконечника) определенной формы и размеров. Это опр

Основные положения
Сплав - это система, состоящая из нескольких компонентов. Компоненты в сплаве могут группироваться, передвигаться, обмениваться энергией, но всегда стремятся занять равновесное (устойчивое

Общие положения
Линии диаграммы (критические температуры сплавов) означают изменение строения и свойств сплавов. Две верхние линии (ликвидус и солидус) обозначают первичные превращения сплавов, т.е. измен

СТРУКТУРА ЧУГУНОВ
  Цель работы:ознакомиться с обозначением, строением и свойствами фаз и структурных составляющих диаграммы состояния сплавов системы железоцементит; выполнить анализ

Основные положения
Метастабильная (неустойчивая) структура (сплошные линии диаграммы) получаются при быстром охлаждении чугунов, стабильная (пунктирные линии) - при медленном охлаждении (рис. 1). Составляющи

Общие положения
Цветные металлы являются более дорогими и дефицитными по сравнению с черными металлами, однако область их применения в технике непрерывно расширяется. К группе широко применяемых цветных м

Алюминий и его сплавы
Алюминий - один из наиболее легких конструкционных материалов; его плотность 2,7 г/см3. Технически чистый алюминий имеет относительно невысокую температуру плавления (657°), незначительн

Литейные алюминиевые сплавы
Предназначены для изготовления деталей методами фасонного литья (в земляные или металлические формы, под давлением и т.д.), имеют хорошие литейные свойства высокую жидкотекучесть, малую склонность

Медные сплавы
Различают две группы медных сплавов: латуни - сплавы меди с цинком с добавками небольшого количества других элементов; бронзы - сплавы меди с другими элементами, среди котор

Магний и его сплавы
Магний относится к числу самых легких металлов, используемых в промышленности. Его плотность 1,47 г/см3, он в 1,6 раза легче алюминия и в 4,5 раза легче железа. Магниевые сплавы

Объём требований
1. Каковы свойства чистого алюминия и область его применения? Как классифицируются алюминиевые сплавы? Укажите марки, состав, свойства и область применения литейных и деформ

Основные положения
Антифрикционные материалы (АФМ) – материалы, обладающие низким коэффициентом. АФМ используют для изготовления втулок и вкладышей подшипников скольжения, широко применяемых в машинах и приборах из-з

Баббиты
Это мягкие (до 30 НВ) легкоплавкие (tпл = 240 - 320ºС) сплавы на основе олова или свинца. Обозначают их буквой Б, справа от которой ставятся цифры, показывающие процент олова или бу

Композиционные АФМ
Композиционный материал – композит-материал, получаемый объединением разнородных веществ в монолитную структуру. Композиты получают методом прогрессивной малоотходной технологии – порошков

Неметаллические АФМ
К этой группе относятся пластмассы, углеграфиты, композиционные материалы на неметаллической основе, резины, древесина. Пластмассы – материалы, изготовленные на основе полимеров, пр

Углеграфитовые материалы
Для узлов трения, работающих в газовых и жидких агрессивных средах в диапазоне температур от –200 до +2000ºС со смазкой и без смазки, широко используются углеграфитовые АФМ. Графит –

Древесина
Древесина – природный полимерный материал растительного происхождения. Достоинства её как конструкционного материала: малый объемный вес, достаточно высокая удельная прочность и упругость, хорошая

Минералы
Естественные (агат), искусственные (рубин, корунд) минералы или их заменители ситаллы (стеклокристаллические материалы) применяются для миниатюрных подшипников скольжения – камневых опор прецизионн

ЗАКАЛКА
  Это один из видов термической обработки. Как и любой процесс термообработки, она состоит из последовательности операций: нагрев до температуры закалки (tзак) – выдержка п

Основные положения
Отпуск стали – это заключительная операция термической обработки от правильности проведения которой зависит качество детали. При отпуске закаленная сталь нагревается ниже нижней критической точки А

Дефекты отпуска стали
Повышенная твёрдость стали наблюдается в результате отпуска при заниженной температуре или недостаточной выдержке. Повторный отпуск при соблюдении режима обеспечит снижение твердости до требуемого

Порядок выполнения работы
1. Ознакомиться с сущностью отпуска, его видами и применением (по пособию). 2. Измерить твёрдость закаленных образцов, занести данные в таблицу 2. 3. Выбрать параметры различных в

ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА
Цель работы: изучение способов химико-термической обработки стали (ХТО) и их назначение, изучение структур и свойств стали после ХТО и последующей термической обработки.

Основные положения
ХТО – это технологические процессы насыщения поверхностного слоя деталей каким-либо химическим элементом, находящимся в атомарном состоянии при высокой температуре. В зависимости от насыщающего эле

СТРУКТУРА НАПЛАВЛЕННЫХ ПОВЕРХНОСТЕЙ
Цель работы: изучение структур наплавленных поверхностей и сварного соединения.   Оснащение рабочего места 1. Плак

СНЯТИЕ ВНЕШНИХ ХАРАКТЕРИСТИК СВАРОЧНОГО ТРАНСФОРМАТОРА ТД-300
Цель работы: ознакомиться с требованиями к источникам питания для электродуговой сварки; изучить принцип работы сварочного трансформатора и метод регулирования сварочного тока. Озн

ВОЛОЧЕНИЕ
Цель работы: изучение различных видов ОМД, практическое исследование производства проволоки методом волочения и явления наклепа (нагартовки).

Физические основы ОМД
При ОМД происходит деформация металла, т.е. смещение частей заготовки и маленьких объемов металла внутри заготовки – зерен (кристаллитов) благодаря перемещению атомов в результате действия внешних

Понятие о горячей и холодной ОМД
По температуре, при которой происходит обработка металлов, она делится на горячую и холодную. Границей между ними является температура рекристаллизации Тр:   Т

Горячая ОМД
Одним из многих параметров процесса ОМД, определяющих величину деформирующего усилия, является прочность металла. С увеличением температуры нагрева металла его прочность уменьшается (до нуля при ра

Холодная ОМД
При холодной ОМД свойства металла изменяются. Так, с увеличением степени деформации повышается прочность (sв) и твёрдость (НB) металла и уменьшается его пластичность (d и y). Это явление

Рекристаллизация
Нагрев наклёпанного (т.е. после холодной ОМД) металла до температуры t ³ tр, выдержка его в печи в течение времени, необходимого для восстановления пластичности металла до исходной,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги