рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Принцип действия дальномерных систем. Наклонная и горизонтальная дальности.

Принцип действия дальномерных систем. Наклонная и горизонтальная дальности. - раздел Образование, Системы координат, применяемые в навигации сферическая, полярная, ортодромическая Характеристика Dme. Дальномерная Радионавигационная Сист...

Характеристика DME. Дальномерная радионавигационная система (ДРНС) включает в себя наземное оборудование (дальномерный радиомаяк) и бортовое оборудование (самолетный дальномер).

В международной практике такие системы называют DME (Distance Measuring Equipment – оборудование измерения дальности). Такое название используется и в документах аэронавигационной информации России, хотя радиомаяки, выпускаемые отечественными производителями, могут иметь и совсем другое официальное название (например, РМД – радиомаяк дальномерный).

Принцип действия дальномерной системы в упрощенном виде заключается в следующем (рис.6.1). Самолетный дальномер на борту излучает электромагнитные импульсы (радиоволны) по всем направлениям. Наземный радиомаяк принимает их и через фиксированное время задержки (50 микросекунд) излучает ответный сигнал, который принимается на борту.

 

Рис.6.1. Принцип работы дальномерных РНС

Время t между излучением импульса дальномером и приемом им же ответного импульса складывается из времени прохождения импульса «туда» (от самолета до радиомаяка), такого же времени прохождения ответного сигнала «обратно» и времени задержки. Зная скорость распространения радиоволн с, можно определить расстояние до маяка

 

Поскольку радиоволны УКВ-диапазона распространяются по прямой, то L в данной формуле – это наклонная дальность (по прямой линии от самолета до радиомаяка).

В данном случае получается, что бортовое оборудование как бы запрашивает информацию у радиомаяка, то есть является запросчиком (interrogator), а радиомаяк отвечает ему, является ответчиком (transponder).

Это общий принцип измерения дальности, но на самом деле, конечно, все сложнее и интереснее. Дальномер излучает не одиночные, а парные импульсы (интервал между импульсами в паре, например, 12 мкс) и радиомаяк «отвечает» только в том случае, если получил именно такой импульс. В противном случае ему пришлось бы отвечать на все случайные импульсы, которые какое-то другое оборудование передало на этой частоте (например, сотовая связь работает в близком диапазоне частот).

Все самолеты, работающие с данным радиомаяком, излучают импульсы на одной частоте, но интервал между парами импульсов у всех ВС разный, у каждого своя частота повторения импульсов PRF (Pulse Repetition Frequency). Ответчик радиомаяка посылает импульсы с такой же PRF, с какой принял сигналы от данного самолета. Это сделано для того, чтобы каждый самолет получил ответ именно на свой сигнал, а не для другого ВС.

Кроме того, радиомаяк отвечает не на той частоте, на которой он сигнал принял, а на отличающейся от нее на 63 МГц. Это сделано для того, чтобы бортовой дальномер не принял по ошибке за ответный сигнал радиомаяка собственные импульсы, отраженные от каких-то объектов (гор, облаков, фюзеляжа). В противном случае могло бы получиться так, что дальномер излучил запросные импульсы, они отразились от горы, дальномер их принял и посчитал, что это ответные импульсы от радиомаяка.

При включении бортового оборудования DME оно вначале работает в режиме поиска и передает запросные импульсы с частотой 150 пар в секунду. Когда ответный сигал получен (обычно через 4-5 секунд) частота следования импульсов уменьшается до 25 в секунду.

Пропускная способность наземного ответчика ограничена, он может не успевать ответить всему множеству самолетов, которые его запрашивают.

Обычно радиомаяк способен обслужить одновременно 100 самолетов. Если их в зоне действия маяка находится больше, то перестают обслуживаться наиболее слабые сигналы, от наиболее удаленных самолетов.

Для работы DME выделен диапазон частот от 960 до 1215 МГц. Это дециметровые волны (UHF) ультракоротковолнового диапазона, откуда следует, что они распространяются в пределах дальности прямой видимости. Поэтому к ним относится все, что говорилось ранее о максимальной дальности действия средств УКВ-диапазона.

Но оказывается, что в большинстве случаев пилоту вовсе не обязательно знать, на какой частоте работает радиомаяк DME. Дело в том, что по отдельности, сами по себе, такие радиомаяки устанавливают крайне редко. В большинстве случаев они совмещены (co-located) с маяками VOR или маяками посадочной системы ILS. Конструктивно эти средства с DME могут быть никак не связаны и работают на других частотах, просто установлены в одном и том же месте. В этом случае частоты таких радиомаяков DME и радиомаяков VOR (или ILS) являются спаренными, то есть объединены в пары. Каждой частоте VOR соответствует своя вполне определенная частота DME. Опубликованы специальные таблицы соответствия частот. Например, если частота VOR 108,40 МГц, то частота DME обязательно будет 1045 МГц для запросных импульсов и 982 МГц (на 63 МГц меньше) для ответных импульсов. То же самое и для ILS.

Частоты VOR и ILS, о которых шла речь в предыдущих главах, пронумерованы и эти номера названы каналами (Channel). Поскольку понятие канала еще понадобится далее, в табл.6.1 в иллюстративных целях приведена небольшая выдержка из общей таблицы частот и каналов.

Выдержка из таблицы номеров каналов

Таблица 6.1

Канал Частота VHF средства, МГц Вид VHF средства Соответствующие частоты DME и TACAN, МГц
Запрос Ответ
20Х 108,30 ILS
20Y 108,35 ILS
21X 108,40 VOR
21Y 108,45 VOR
22X 108,50 ILS
22Y 108,55 ILS
23X 108,60 VOR
24Y 108,65 VOR

 

Из таблицы можно видеть, что для каналов, обозначенных Х, частота ответа на 63 МГц меньше, чем запроса, а для каналов У – наоборот на 63 МГц больше.

Если пилот на своем бортовом оборудовании устанавливает частоту VOR (или ILS), то автоматически устанавливается и соответствующая ей частота DME.

Могут использоваться радиомаяки трех видов, обозначаемые как DME/N, DME/P и DME/W. В подавляющем большинстве случаев приходится иметь дело с маяками DME/N как на трассах, так и на аэродромах, поэтому под DME далее и будем понимать именно их. Они имеют узкий спектр излучения (N – narrow, узкий). Маяки DME/P являются более точными (P – precision, точность), но устанавливаются, как правило, только в составе микроволновой системы посадки MLS (Microwave Landing System). Но таких систем на аэродромах мира установлено очень мало. Еще реже используются DME/W с широким спектром излучения (W – wide, широкий).

Бортовое оборудование, работающее с маяками DME, часто называют самолетными дальномерами (например, СД-67, СД-75). Пилоту приходится иметь дело с его индикатором, на котором дальность отображается в виде цифр – электромеханическим способом (барабанный счетчик) или с помощью светодиодов. На рис. 6.2 слева изображен индикатор, входящий в состав СД-67. Если значение дальности на индикаторе недостоверно (например, при потере сигнала), цифры перекрываются бленкером, как и показано на рисунке. На том же рисунке справа изображен «индикатор самолетный дальности ИСД-1», который может работать в составе СД-75. На нем можно изменить единицы измерения дальности (километры или морские мили).

Значение дальности может быть выведено и на другие индикаторы, например, на HIS.

 

Рис. 6.2. Виды индикаторов самолетного дальномера

DME является очень точным средством. В соответствии со стандартами ИКАО суммарная погрешность измерения дальности, выраженная в метрах, должна быть не больше ±(460+0,0125D), где D – значение измеряемой дальности. Чем дальше самолет от маяка, тем больше погрешность измерения дальности. Указанная погрешность соответствует вероятности 0,95, следовательно, СКП измерения дальности вдвое меньше.

Это означает, что вблизи радиомаяка СКП имеет порядок около σD=0,3 км, а на удалении, например, D=300 км, уже около σD=2 км. Это очень хорошая точность, которая в большинстве случаев удовлетворяет современным жестким требованиям к точности аэронавигации. У DME/P погрешность еще меньше (порядка 30 м).

Пересчет наклонной дальности в горизонтальную. Дальномерные системы непосредственно измеряют наклонную дальность, но для навигации чаще необходима дальность горизонтальная. Для определения МС, то есть местоположения ВС на земной поверхности, пилот откладывает дальность на карте, то есть в горизонтальной плоскости. Очевидно, что по величине наклонная и горизонтальная дальности различаются, и если вместо горизонтальной дальности использовать наклонную (например, отложив ее на карте), то будет иметь место погрешность. Она будет иметь систематический характер, поскольку при данных условиях будет иметь одну и ту же величину.

Разумеется, эта погрешность возникает не по вине самой дальномерной системы (она-то измеряет дальность правильно), а по вине пилота, который вместо одной величины использует другую.

С учетом сферичности Земли рассчитать горизонтальную дальность по известной наклонной можно по формуле

 

где H – высота полета; R – радиус Земли.

Можно обратить внимание, что в данной формуле величина H/R очень мала (порядка одной тысячной), следовательно, знаменатель под корнем очень близок к единице. Поэтому данную формулу вполне можно упростить:

 

Очевидно, что эта формула соответствует теореме Пифагора и предполагает, что Земля плоская (рис. 6.3). Однако ею вполне можно пользоваться, учитывая, что в гражданской авиации выполняются полеты не на столь уж больших высотах, особенно по сравнению с радиусом Земли. Например, если полет выполняется на высоте H=10 км и измерена L=300 км, то по точной формуле (с учетом сферичности Земли) получим D=299,598 км, а по приближенной (на плоскости) D= 299,833 км. То есть погрешность составит всего 235 метров. Это сопоставимо со случайной погрешностью измерения дальности с помощью DME. Таким образом, учитывать сферичность Земли при расчете горизонтальной дальности не имеет особого смысла, особенно на небольших удалениях.

 

Рис. 6.3. Наклонная и горизонтальная дальности

Но, может быть, можно вообще не пересчитывать наклонную дальность в горизонтальную? А вот это допустимо делать далеко не всегда.

Прежде всего, можно обратить внимание, что соотношение между L и D зависит еще и от высоты полета H. Даже из рис. 6.3 можно видеть, что когда ВС находится точно над радиомаяком, наклонная дальность равна высоте полета, а горизонтальная дальность равна нулю. В такой ситуации имеет место самое большое различие между L и D.

Если самолет находится в воздухе, то показания дальномера никогда не будут равны нулю.

Но по мере удаления от радиомаяка различие между этими величинами становится все меньше. Уменьшается разность между гипотенузой (L) и катетом (D) в прямоугольном треугольнике, вершинами которого являются радиомаяк, ВС и МС. Эта разность может стать сравнимой по величине с самой точностью измерения наклонной дальности.

На практике принято считать, что вполне допустимо не пересчитывать наклонную дальность в горизонтальную (то есть, принять D=L) в случае, если наклонная дальность превышает высоту полета в 5-7 раз и более.

Например, если H=10 км, а L=70 км (в семь раз больше), то получим D=69,3 км. Наклонная дальность отличается от горизонтальной на 700 м. В большинстве случаев этой погрешностью можно пренебречь, ведь современный самолет пролетает это расстояние за 3 сек.

Но если при полете на той же высоте наклонная дальность составляет всего L=30 км, то ей соответствует D=28,3 км. Погрешность в 1,7 км является уже довольно существенной, особенно при полете в районе аэродрома, где требуется более высокая точность навигации.

Пересчет наклонной дальности в горизонтальную можно выполнить непосредственно по формуле (6.2), например, с помощью калькулятора. Но при наличии НЛ-10 это удобнее сделать с использованием вспомогательного угла θ (рис. 6.3). Очевидно, что

 

Эти несложные формулы могут быть легко реализованы на НЛ-10 с помощью ключа на рис. 6.4.

 

Рис. 6.4. Пересчет наклонной дальности в горизонтальную на НЛ-10

– Конец работы –

Эта тема принадлежит разделу:

Системы координат, применяемые в навигации сферическая, полярная, ортодромическая

Рис Полярная система координат... Дальность расстояние от начала системы координат до объекта точки...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Принцип действия дальномерных систем. Наклонная и горизонтальная дальности.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы координат, применяемые в навигации (сферическая, полярная, ортодромическая).
Если очень высокая точность решения навигационных задач не требуется, то Землю можно рассматривать как сферу. В этом случае используется нормальная сферическая система координат, полюсы кото

Навигационные и пилотажные элементы.
Пилотажные элементы. Навигация и пилотирование являются процессами управления движением ВС. Чтобы описывать это движение, используются величины, называемые навигационными и пилотаж

Ветер и его характеристики. Эквивалентный ветер.
Воздушные массы атмосферы практически всегда находятся в движении, которое вызвано различием температуры и давления в различных районах земной поверхности. Причины и характер такого движения изучае

Навигационный треугольник скоростей. Зависимость путевой скорости и угла сноса от угла ветра.
ВС движется относительно воздушной массы с истинной воздушной скоростью V, воздушная масса относительно земли со скоростью U,и скорость перемещения ВС относительно

Принципы измерения курса и виды курсовых приборов.
Курс характеризует направление продольной оси ВС в горизонтальной плоскости, то есть показывает, куда направлен «нос» самолета. Он имеет большое значение для навигации, поскольку одновременно являе

Девиация, её виды, учёт в полёте.
Очевидно, что в одной и той же точке пространства не могут одновременно существовать два магнитных поля, два вектора напряженности – Земли (H) и самолета (F). Эти

Практические рекомендации по применению магнитных компасов.
1. Следует помнить, что в полярных районах, где велико магнитное наклонение и, следовательно, мала горизонтальная составляющая магнитного поля Земли, магнитные компасы работают неустойчиво и могут

Гироскопический принцип измерения курса. Выставка оси гироскопа, горизонтальная и азимутальная коррекция.
Гироскоп (от древнегреческих «вращать» и «смотреть») – это в принципе любое вращающееся тело. В современной технике гироскоп представляет собой достаточно массивный ротор с большой скоростью

Гирополукомпас ГПК-52. Ортодромичность гирополукомпаса.
Гирополукомпас ГПК-52. Принцип работы гироскопических курсовых приборов рассмотрим на примере одного из простейших устройств такого рода− гирополукомпаса ГПК-52.

Ортодромичность курсового гироскопа
Теперь после анализа поведения курсового гироскопа на неподвижном самолете рассмотрим, как он будет вести себя в случае, когда ВС перемещается по ортодромической линии пути. Общий случай – п

Опорный меридиан и ортодромический курс. Преобразование курсов.
Ось гироскопа в начале полета может быть выставлена по абсолютно любому направлению. Пилоты привыкли, что курс 0° – это на север, 90° – на восток и т.д. Поэтому, чтобы численные значения гир

Основные сведения о курсовых системах. Режим магнитной коррекции.
Каждый из двух рассмотренных принципов измерения курса – магнитный и гироскопический – имеет свои достоинства и недостатки. Магнитный компас обладает тем достоинством, что позволяет именно

Режим магнитной коррекции
Как уже отмечалось, в режиме «ГПК» курсовая система работает аналогично обычному гирополукомпасу, поэтому этот режим не требует дополнительного отдельного рассмотрения. Рассмотрим работу к

Понятие о радиовысотомерах
Радиовысотомер (РВ) является автономным радиотехническим устройством. Это означает, что для его работы используются радиоволны и не требуется какого-либо оборудования на земле. Разл

Принцип работы, устройство и погрешности барометрического высотомера.
По принципу своего устройства барометрический высотомер по сути представляет собой барометр-анероид с тем лишь отличием, что его шкала отградуирована не в единицах давления, а в единицах выс

Погрешности барометрического высотомера
Барометрический высотомер имеет ряд погрешностей, различающихся по вызывающим их причинам. Погрешности, вызванные разными факторами, складываются, образуя одну общую погрешность – разность между пр

Уровни начала отсчета барометрической высоты
В принципе, путем установки давления на шкале барометрического высотомера пилот может сам выбрать уровень, от которого он желает отсчитывать высоту. Но с точки зрения безопасности полетов необходим

Правила установки давления на шкале барометрического высотомера
Рассмотрим порядок установки давления при полете по ППП. Традиционная технология, принятая в нашей стране, предусматривает, что перед вылетом все члены экипажа на своих высотомерах

Однострелочные указатели скорости
В уравнение Бернулли входят плотности воздуха ρ в обоих сечения струйки. Для небольших скоростей (до 400-450 км/ч) и высот полета (до 4000-5000 м) воздух можно считать несжимаемым

Комбинированные указатели скорости
На больших скоростях и высотах разность истинной и приборной скоростей становится уже значительной. Кроме того, на больших скоростях и высотах начинает заметно сказываться сжимаемость воздуха. Поэт

Погрешности указателей скорости
Инструментальные погрешности ΔVи возникают из-за несовершенства конструкции прибора и неточности его регулировки. Каждый экземпляр прибора имеет свои значения инструментальны

Понятие о счислении
При выполнении любого полета члены летного экипажа должны в любой момент времени знать текущее местонахождение ВС. Определение места самолета – одна из основных задач аэронавигации. В аэронавигации

Графическое счисление пути
Полная прокладка. Целью полной прокладки является определение текущего МС и поэтому она, конечно, выполняется во время полета. Не следует думать, что в каждом полете пилот или штурман выполн

Принцип автоматизированного счисления частноортодромических координат.
Счисление – это расчет текущих координат, поэтому основной частью любой автоматизированной системы счисления пути является навигационный вычислитель. Он может быть аналоговым, то есть основа

ДИСС. Курсодоплеровское и курсовоздушное счисление.
Доплеровский измеритель скорости и сноса (ДИСС) – бортовое радиотехническое устройство, позволяющее измерять на борту ВС его путевую скорость и угол сноса. ДИСС основан на использов

Основные правила аэронавигации. Контроль пути и его виды.
На протяжении всего полета экипаж обязан выполнять следующие основные правила аэронавигации. 1) Контроль выдерживания заданной траектории полета с периодичностью, необходимой для обеспечен

Визуальная ориентировка.
Визуальная ориентировка – способ определения МС, основанный на сличении карты с пролетаемой местностью. Для визуальной ориентировки используются ориентиры. Навигационный ориентир

Обобщённый метод линий положения. Навигационный параметр, поверхность и линия положения.
Навигационный параметр. Место самолета можно определить с помощью различных технических, в том числе радионавигационных средств и разными методами. Но как показал профессор В.В

Поверхность и линия положения.
Если в какой-то точке пространства навигационный параметр имеет какое-то определенное значение, то это не вовсе не значит, что в других точках его значения должны быть обязательно другие. Наверняка

Виды линий положения.
В навигации чаще всего используются навигационные параметры, которые являются геометрическими величинами, то есть расстояниями, углами и пр. В этом случае каждому виду навигационного параметра соот

Виды погрешностей. Средняя квадратическая погрешность.
Виды погрешностей. Практически всегда погрешность включает в себя две составляющие ее части: систематическую и случайную. Δa= Δaсист + Δaслуч .

Навигационная характеристика радиокомпасной системы.
Радиокомпасная система включает в себя наземную радиостанцию и бортовой пеленгатор, называемый автоматическим радиокомпасом (АРК). В качестве радиостанций могут использоваться специально установлен

Принцип работы АРК и порядок его настройки.
Принцип работы радиокомпаса основан на направленном приеме радиоволн. АРК включает в себя следующие основные составные части: – поворотную рамочную антенну; – ненаправленную (шлей

Способы полёта на РНТ (пассивный, курсовой, активный).
Способы полета на или от радиостанции. Как показано ранее, КУР не является навигационным параметром, поскольку в одной и той же точке пространства может иметь любое значение в

Контроль пути по направлению с помощью АРК при полёте на и от РНТ.
Условие контроля пути по направлению. Существует общий термин «радионавигационная точка» (РНТ), которым можно обозначать любое наземное радионавигационное средство: ОП

Контроль пути по дальности с помощью АРК.
Контроль пути по дальности – это определение пройденного или оставшегося расстояния до ППМ. Для его выполнения также можно использовать АРК и ОПРС. Но для этого ОПРС, конечно, должна находиться не

Расчёт ИПС и определение МС по двум радиостанциям.
Для решения некоторых навигационных задач, например, для определения МС, необходимо проложить на карте ЛРПС. Для этого необходимо сначала определить пеленг самолета. Поскольку на любой карте нанесе

Определение места самолета по двум радиостанциям
Определение места самолета – это полный контроль пути, поскольку если известно место самолета, то можно определить и уклонение от ЛЗП (контроль пути по направлению), и пройденное или оставшееся рас

Исправление пути с выходом в ППМ и с углом выхода.
Исправление пути с выходом в ППМ. Исправление пути это действия по выводу ВС на заданную траекторию после того, как отклонение от нее обнаружено. Один из способов испр

Исправление пути с углом выхода
Ранее в главе 1 уже был рассмотрен один из способов исправления пути – с выходом в ППМ. Но такой способ в гражданской авиации применим главным образом при небольших линейных уклонениях, например, н

Указатели типа РМИ и УГР. Полёт по ЛЗП с их использованием.
Наиболее распространены так называемые радиомагнитные индикаторы (РМИ). По-английски они называются точно так же – Radio Magnetic Indicator (RMI). В некоторых типах отечественных навигационных комп

Полет в створе радиостанций
Если полет должен выполняться по ЛЗП, на которой установлены две радиостанции, то говорят о полете в створе радиостанций. Если ВС летит между РНТ (одна впереди, а другая сзади), то створ называется

Минимальная и максимальность действия РНС.
Минимальная дальность действия. В вертикальной плоскость диаграмма направленности большинства наземных радионавигационных средств (радиостанций, радиомаяков) выглядит примерно

Навигационная характеристика радиопеленгаторной системы.
Характеристика радиопеленгаторной системы. Радиопеленгаторная система является в первую очередь средством управления воздушным движением (УВД). С ее помощью диспетчер УВД на зе

Радиомаячная система VOR и её применение для полёта по ЛЗП, определение МС.
Принцип действия VOR. Радиомаячная угломерная система VOR (Very High Frequency Omni-directional Range) включает в себя наземное оборудование – радиомаяк VOR, и бортовое оборудо

Определение места самолета по одной радиостанции
В соответствии с обобщенным методом линий положения для определения МС необходимо два навигационных параметра и две соответствующие им линии положения. Казалось бы, что если радиостанция только одн

Угломерно-дальномерные системы. Навигационная характеристика РСБН.
Угломерно-дальномерными радионавигационными системами (УДРНС) называют такие системы, которые позволяют одновременно измерить два навигационных параметра – пеленг и дальность. С помощью УДРНС можно

Навигационная характеристика наземных РЛС и их применение для контроля и исправления пути.
Понятие о радиолокации. Под радиолокацией (от «радио» и location (лат.) – определять местоположение) в широком смысле слова понимают способы определения местоположения и характ

Понятие о зональной навигации.
Навигационное наведение. Невозможно понять, что такое зональная навигация, да и современная навигация вообще, если не иметь представления о таком понятии, как навигационное нав

Принцип работы бортовой РЛС. Органы управления БРЛС «Гроза».
Бортовая радиолокационная станция (БРЛС) является автономным радиотехническим средством, позволяющим наблюдать радиолокационное изображение пролетаемой местности и окружающей воздушной обстановки,

Способы определения МС с помощью БРЛС (угломерный, дальномерный, угломерно-дальномерный).
С помощью БРЛС можно определить МС гораздо точнее, чем обзорно-сравнительным способом. Для этого на экране локатора нужно измерить курсовой угол и дальность до ориентира. Курсовой угол ори

Обзорно-сравнительный способ ориентировки по БРЛС и определение с её помощью путевой скорости и угла сноса.
Благодаря тому, что на экране БРЛС формируется изображение пролетаемой местности, пилот может вести ориентировку путем сопоставления радиолокационного изображения с полетной картой, наподобие того,

Определение путевой скорости и угла сноса по БРЛС
Определение путевой скорости. Все ориентиры на экране по мере движения ВС перемещаются в сторону, противоположную направлению движения ВС, то есть, на экране примерно вниз. Име

Принцип инерциального счисления пути
Инерциальные навигационные системы (ИНС) основаны на измерении ускорений ВС по осям системы координат. Ускорения измеряются устройствами, называемыми акселерометрами. Принцип действия

Параметры, определяемые с помощь ИНС. Бесплатформенные ИНС.
Параметры, определяемые с помощью ИНС.Инерциальные системы предназначены для определения координат места самолета. Но в процессе их определения можно получить значения многих д

Бесплатформенные инерциальные навигационные системы
На протяжении многих десятилетий усилия инженеров, разрабатывавших традиционные ИНС, были направлены на уменьшение собственного ухода гироскопов, удерживающих гироплатформу в заданном положении. Не

Расчёт курса, скорости и времени по известному ветру.
Рассмотрим порядок решения задачи на примере со следующими исходными данными: V = 400; ЗМПУ =232; δ =290; U = 70; S = 164; ΔМ= –4.

Определение ветра в полёте.
Дано: V=680; W=590; МК=312; УС=+8; ΔМ= –4. Найти: δн , δ, U.

Расчёт истинной скорости по широкой стрелке.
Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле: Vи = Vпр + ΔVи + ΔVa + ΔVсж + ΔV

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги