рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Угломерно-дальномерные системы. Навигационная характеристика РСБН.

Угломерно-дальномерные системы. Навигационная характеристика РСБН. - раздел Образование, Системы координат, применяемые в навигации сферическая, полярная, ортодромическая Угломерно-Дальномерными Радионавигационными Системами (Удрнс) Называют Такие ...

Угломерно-дальномерными радионавигационными системами (УДРНС) называют такие системы, которые позволяют одновременно измерить два навигационных параметра – пеленг и дальность. С помощью УДРНС можно выполнять полет на или от РНТ, осуществлять контроль пути по направлению и дальности, определять место самолета.

Достоинством УДРНС является то, что одна и та же система дает сразу два параметра, что и необходимо для определения МС. Одной из линий положения является ЛРПС в форме ортодромии, а второй – ЛРР в виде окружности (рис. 7.1).

 

Рис. 7.1. Определение МС с помощью УДРНС

При этом ЛРР на карте наносить нет необходимости. Ведь нужна не сама линия положения, а только точка ее пересечения с ЛРПС. Поэтому на практике ЛРР на карте не изображают, а просто откладывают вдоль ЛРПС измеренное значение дальности. Точность определения МС зависит от точности измерения пеленга и дальности, погрешностей графической работы на карте. Если точки, от которых отсчитываются пеленг и дальность совпадают, то угол пересечения этих двух линий положения всегда равен 90º, где бы ни находилось МС. Это обеспечивает наилучшую точность при прочих равных условиях.

К УДРНС можно отнести все системы, с помощью которых можно получить пеленг и дальность, например:

– радиотехническая система ближней навигации (РСБН);

– VOR/DME (радиомаяки VOR и DME, расположенные в одном месте);

– TACAN;

– наземные радиолокационные станции кругового обзора.

Радиотехническая система ближней навигации (РСБН) является угломерно-дальномерной радионавигационной системой, разработанной в СССР во Всесоюзном научно-исследовательском институте радиоаппаратуры в 50-е годы ХХ века.

В СССР было установлено более ста радиомаяков этой системы и большинство типов отечественных ВС было оснащено соответствующим бортовым оборудованием. В настоящее время в гражданской авиации большинство радиомаяков снято с эксплуатации, хотя кое-где они еще остаются на военных аэродромах. Причинами снятия системы с эксплуатации являются не только ее моральное устаревание (в принципе разработаны современные ее модификации), но и другие факторы. Оказалось, что система работает в таком диапазоне радиоволн, который официально выделен для систем неавиационного назначения, в частности, для сотовой телефонной связи. Кроме того, она не может быть использована на ВС иностранного производства, поскольку они не имеют соответствующего бортового оборудования. Ведь система отечественная. Поэтому в настоящее время не планируется замена РСБН более современным оборудованием аналогичного принципа действия, а вместо нее устанавливаются радиомаяки типа VOR и DME. Это вызывает определенное сожаление, поскольку до появления спутниковых навигационных систем РСБН была самой точной навигационной системой не только в стране, но, пожалуй, и в мире.

Разумеется, существует много систем, которые можно отнести к системам ближней навигации. Это те же VOR, DME, АРП и т.д. Поэтому название «РСБН» следует рассматривать как имя собственное, присвоенное конкретной разновидности навигационных систем ее разработчиками.

Система включает в себя наземный радиомаяк и бортовое оборудование. Маяки обозначают буквой «Н» от слова «наземное», например РСБН-2Н, РСБН-4Н, РСБН-6Н. Бортовое оборудование вначале обозначалось буквой «С» (самолетное), например, РСБН-2С. Затем стали использоваться и другие обозначения (РСБН-85, «Радикал», «Веер-М» и т.п.).

 

Рис. 7.5. Радиомаяк РСБН-6Н в аэропорту Ставрополь

Система работает в диапазоне частот 770-970 МГц, в котором выделены фиксированные частоты, названные каналами. Каналы пронумерованы от 1 до 40, поэтому для настройки оборудования на конкретный радиомаяк не нужно знать частоту, достаточно на щитке штурмана (рис. 7.6) установить номер канала – его десятки и единицы.

 

Рис. 7.6. Органы управления бортовым оборудованием РСБН-2С

На отечественных маршрутных картах радиомаяки РСБН обозначают теми же символами, что и VOR и DME (соответственно, небольшой азимутальный кружок и прямоугольник) – ведь в этих системах, как и в РСБН, измеряется пеленг и дальность. Отличить на карте РСБН от этих систем можно по надписи в боксе, поскольку для РСБН указывается не частота (как для VOR), а номер канала. Например, «33-й» (рис. 7.7).

 

Рис. 7.7. Обозначение РСБН на радионавигационных картах

Измеряемыми навигационными параметрами являются наклонная дальность от самолета до радиомаяка и истинный пеленг самолета от меридиана радиомаяка (ИПС). Применительно к РСБН этот ИПС принято называть «азимут», потому что именно такие надписи сделали разработчики системы на органах управления.

В соответствии с паспортными данными системы погрешность измерения азимута ±0,25º, а дальности ±0,2 км. Эти значения соответствуют вероятности 0,95, то есть представляют собой удвоенные СКП. Можно видеть, что дальность измеряется несколько точнее, чем у DME, а азимут как минимум в десять раз точнее, чем у VOR.

Принцип измерения дальности до радиомаяка аналогичен принципу работы DME и основан на измерении времени между излучением запросного импульса с ВС и получением ответного импульса от радиомаяка.

Принцип измерения азимута отличается от того, как работает VOR. Радиомаяк излучает радиоволны через антенну, имеющую диаграмму направленности в виде двух узких рядом лежащих лепестков. Антенна вращается, совершая 100 оборотов в минуту, то есть период вращения составляет 0,6 с. Когда ось диаграммы (линия между лепестками) проходит через ВС, на борту принимается так называемый азимутальный импульс. Азимут самолета определяется по времени между прохождением оси диаграммы направления на север и прохождением ее через ВС (получением азимутального импульса).

Но каким образом бортовое оборудование узнает момент, когда диаграмма была направлена на север? Для этого другой передатчик радиомаяка на той же частоте излучает во все стороны (по ненаправленной антенне) две серии импульсов. В одной серии за один оборот антенны излучается 35 импульсов, а во второй – 36 импульсов. Естественно, моменты излучения этих импульсов «расходятся». Но в момент, когда направленная антенна проходит через направление на север, импульсы обеих серий совпадают, то есть излучаются одновременно.

На борту ВС принимаются все эти импульсы и в момент, когда совпали импульсы серий «35» и «36» (это момент прохождения антенной нулевого азимута), начинается отсчет времени до получения азимутального импульса от направленной антенны. Например, если это время составило 0,2 с, то, следовательно, азимут равен 120 (360*0,2 с/0,6 с).

РСБН может работать не только как угломерно-дальномерная система, но и как система захода на посадку по приборам. Для этого на аэродроме должны быть установлены дополнительные радиомаяки – ПРМГ, посадочные радиомаячные группы (рис.7.8). Эти радиомаяки создают в пространстве вертикальную плоскость курса, совпадающую с направлением ВПП, и плоскость глиссады (траектории снижения при заходе на посадку). Пилот выдерживает заданную траекторию захода по вертикальной и горизонтальной планкам индикатора типа КППМ (или другого аналогичного прибора), подобно тому, как это делается при заходе по ILS (рис.7.9).

 

Рис.7.8. Посадочная радиомаячная группа ПРМГ-76

 

Рис. 7.9. Комбинированный пилотажный прибор (КППМ).

Точность и надежность такого захода, конечно, хуже чем при заходе по ILS, к которой предъявляются очень жесткие требования. Но зато ПРМГ устанавливаются на автомобилях и могут быть быстро перебазированы на любой полевой аэродром.

Разработчиками РСБН предусмотрен также режим «Пробивания облачности» для снижения с эшелона перед заходом на посадку. Включив этот режим и установив на отдельном датчике ДВ-47 давление аэродрома, пилот мог выдерживать траекторию снижения (с углом наклона 6º) по горизонтальной планке прибора КППМ. На удалении 15 км система могла автоматически перейти в режим посадки. В гражданской авиации режим пробивания облачности на практике не использовался.

С помощью РСБН определить МС можно не только на борту, но и на земле. В наземное оборудование входит индикатор кругового обзора (ИКО), на котором диспетчер может наблюдать отметки самолетов, выполняющих полет в зоне действия радиомаяка. Правда, в отличие от наземной радиолокационной станции, на ИКО видны отметки не всех ВС, а только тех, на которых установлено бортовое оборудование РСБН.

Органы управления и индикации рассмотрим на примере одного из первых вариантов бортового оборудования (РСБН-2С).

Как уже отмечалось, для настройки на конкретный радиомаяк необходимо на щитке управления штурмана (см. рис. 7.6) установить номер канала. Пока сигнал радиомаяка «не пойман» будут гореть лампочки «Отказ азимута» и «Отказ дальности», расположенные отдельно на приборной доске. В это время показания индикаторов могут быстро меняться и будут недостоверными.

Азимут (ИПС) и дальность можно отсчитать на ППДАШ (прямопоказывающий прибор дальности и азимута штурмана, рис. 7.10) и на ППДАП (прямопоказывающий прибор дальности и азимута пилота).

На обоих индикаторах наклонная дальность отображается цифрами в окошке с точностью до 0,1 км. Азимут на ППДАШ отображается двумя стрелками аналогично стрелочным часам: широкая стрелка по наружной шкале показывает десятки градусов, а узкая по внутренней шкале – единицы и десятые доли градуса. Так, на рис. 7.10 наклонная дальность 474,9 км, а азимут 72,7º.

ППДАП отличается от ППДАШ лишь тем, что у него только одна азимутальная шкала и одна стрелка. Следовательно, азимут можно отсчитать не точнее, чем до 1º. Видимо, разработчики считали, что для пилота, в отличие от штурмана, такая точность вполне достаточна.

После того, как сигнал от радиомаяка принят, необходимо выполнить калибровку каналов азимута и дальности с помощью кремальер в верхнем правом углу щитка штурмана. Если ее не выполнить, требуемая точность не будет обеспечена, а азимут может оказаться с ошибкой ровно на 10º.

После этого можно пользоваться показаниями ППДАШ и ППДАП для навигации.

 

Рис. 7.10. Прямопоказывающий прибор дальности и азимута штурмана (ППДАШ)

Необходимо только помнить, что азимут – это всегда истинный пеленг самолета, причем отсчитанный от меридиана радиомаяка.

Также и при контроле пути по направлению (при полете на или от радиомаяка) нужно помнить, что азимут истинный, следовательно, и сравнивать его нужно с истинным заданным путевым углом, причем отсчитанным от меридиана радиомаяка.

С помощью РСБН также как и с помощью VOR можно выполнять автоматизированный полет по ЛЗП, определяя уклонение от нее с помощью вертикальной планки КППМ (или другого индикатора аналогичного назначения). Но если с помощью VOR и CDI можно выполнять полет только строго от радиомаяка или на него, то РСБН предоставляет гораздо более богатые возможности.

Для этого на щитке управления необходимо установить один из режимов в зависимости от того, по какой ЛЗП планируется полет. Кратко рассмотрим эти режимы.

«Азимут-ОТ» и «Азимут-НА». Эти режимы используются для полета по ЛЗП, проходящей через радиомаяк (соответственно от него или на него).

Это похоже на режим OBS, но имеются отличия. При использовании VOR в любом случае устанавливается ЗМПУ, независимо от того, выполняется полет «от» или «на». А в режимах «Азимут» в любом случае устанавливается заданное значение азимута (ИПС), то есть то значение, которое должно быть при нахождении ВС точно на ЛЗП. При полете от радиомаяка этот заданный азимут совпадает с ЗИПУ, а при полете на радиомаяк отличается от него на 180º. В обоих случаях речь идет о ЗИПУ относительно меридиана радиомаяка.

Значение заданного азимута устанавливается на щитке штурмана ручкой с надписью «Азимут» в окошке над ней. После этого вертикальная планка будет показывать сторону и величину уклонения ВС от ЛЗП на основе сравнения фактического (измеренного) и установленного (заданного) азимутов.

В этом режиме можно проконтролировать пролет любой точки (ППМ, ПОД), расположенной на ЛЗП. Для этого рукояткой «Дальность» на щитке штурмана необходимо установить удаление этой точки от радиомаяка. При приближении ВС к этой точке, когда фактическая дальность приближается к установленной, на приборной доске загорится лампочка «Подлет», а когда ВС будет пролетать эту точку – загорится лампочка «Пункт».

«Орбита». Этот режим применяется для полета по ЛЗП, имеющей форму дуги окружности с центром в точке расположения радиомаяка. На воздушных трассах ЛЗП такой формы, конечно, не используются, но они широко применяются для полета по аэродромным схемам.

Для использования этого режима необходимо поставить переключатель в положение «Орбита-лев.» или «Орбита-прав.» в зависимости от желаемого направления полета по окружности (по или против часовой стрелки) и рукояткой «Дальность» установить радиус окружности. Бортовое оборудование будет непрерывно сравнивать фактическое удаление до радиомаяка с заданным, и вертикальная планка КППМ, как обычно, будет показывать в какой стороне от самолета находится ЛЗП.

«СРП». СРП (счетно-решающий прибор) – это небольшой электромеханический вычислитель. В данном режиме можно выполнять полет по любой прямолинейной ЛЗП, не проходящей через радиомаяк. С применением VOR и DME такой полет невозможен.

В режимах «Азимут» или «Орбита» для задания ЛЗП достаточно было установить всего одну величину (заданный азимут или заданную дальность). Для использования режима «СРП» этого недостаточно. Ведь ЛЗП может проходить в любом месте в пределах зоны действия радиомаяка и в любом направлении. Для того, чтобы задать ЛЗП необходимо сделать следующее.

а) Выбрать на ЛЗП или ее продолжении любую точку. В надписях на блоке СРП эта точка названа «целью», но можно использовать и более мирное название – опорная точка. В частности, в ее качестве можно выбрать ППМ, а еще лучше – точку траверза радиомаяка. Тогда будет наилучшая точность.

б) Установить значения азимута и дальности этой точки от радиомаяка рукоятками на блоке СРП (соответственно рукоятками «угол цели» и «расстояние до цели»).

в) Рассчитать заданный истинный путевой угол участка маршрута относительно меридиана радиомаяка и установить его рукояткой «ЗПУ».

г) Установить режим «СРП».

После выполнения данных операций счетно-решающий прибор будет решать прямоугольные треугольники, образованные самолетом, радиомаяком и его траверзом, рассчитывая отклонение ВС от ЛЗП и индицируя его на КППМ в виде отклонения планки. По сути блок СРП будет рассчитывать ЛБУ таким же способом, который описан в п.7.2.

Таким образом, для пилота во всех режимах полета («Азимут», «Орбита», «СРП») все выглядит одинаково и для выдерживания ЛЗП необходимо удерживать планку в центре прибора.

С использованием блока СРП можно решать и другие навигационные задачи:

– полет по ЛЗП, параллельной заданной;

– определение численного значения ЛБУ;

– определение заданного путевого угла для полета в любую точку (без карты и измерения транспортиром) и автоматизированный полет на нее.

Правда, после РСБН-2С последующие виды бортового оборудования уже не имели в своем составе блока СРП. Да и сами органы управления и индикации существенно изменили свой вид. Для примера на рис. 7.11 представлены индикатор самолетный дальности (ИСД) и индикатор самолетный азимута (ИСА), которые вместо ППДАШ индицировали пеленг и дальность, в частности, на самолете Ил-86.

 

Рис. 7.11. Индикаторы дальности и азимута

– Конец работы –

Эта тема принадлежит разделу:

Системы координат, применяемые в навигации сферическая, полярная, ортодромическая

Рис Полярная система координат... Дальность расстояние от начала системы координат до объекта точки...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Угломерно-дальномерные системы. Навигационная характеристика РСБН.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы координат, применяемые в навигации (сферическая, полярная, ортодромическая).
Если очень высокая точность решения навигационных задач не требуется, то Землю можно рассматривать как сферу. В этом случае используется нормальная сферическая система координат, полюсы кото

Навигационные и пилотажные элементы.
Пилотажные элементы. Навигация и пилотирование являются процессами управления движением ВС. Чтобы описывать это движение, используются величины, называемые навигационными и пилотаж

Ветер и его характеристики. Эквивалентный ветер.
Воздушные массы атмосферы практически всегда находятся в движении, которое вызвано различием температуры и давления в различных районах земной поверхности. Причины и характер такого движения изучае

Навигационный треугольник скоростей. Зависимость путевой скорости и угла сноса от угла ветра.
ВС движется относительно воздушной массы с истинной воздушной скоростью V, воздушная масса относительно земли со скоростью U,и скорость перемещения ВС относительно

Принципы измерения курса и виды курсовых приборов.
Курс характеризует направление продольной оси ВС в горизонтальной плоскости, то есть показывает, куда направлен «нос» самолета. Он имеет большое значение для навигации, поскольку одновременно являе

Девиация, её виды, учёт в полёте.
Очевидно, что в одной и той же точке пространства не могут одновременно существовать два магнитных поля, два вектора напряженности – Земли (H) и самолета (F). Эти

Практические рекомендации по применению магнитных компасов.
1. Следует помнить, что в полярных районах, где велико магнитное наклонение и, следовательно, мала горизонтальная составляющая магнитного поля Земли, магнитные компасы работают неустойчиво и могут

Гироскопический принцип измерения курса. Выставка оси гироскопа, горизонтальная и азимутальная коррекция.
Гироскоп (от древнегреческих «вращать» и «смотреть») – это в принципе любое вращающееся тело. В современной технике гироскоп представляет собой достаточно массивный ротор с большой скоростью

Гирополукомпас ГПК-52. Ортодромичность гирополукомпаса.
Гирополукомпас ГПК-52. Принцип работы гироскопических курсовых приборов рассмотрим на примере одного из простейших устройств такого рода− гирополукомпаса ГПК-52.

Ортодромичность курсового гироскопа
Теперь после анализа поведения курсового гироскопа на неподвижном самолете рассмотрим, как он будет вести себя в случае, когда ВС перемещается по ортодромической линии пути. Общий случай – п

Опорный меридиан и ортодромический курс. Преобразование курсов.
Ось гироскопа в начале полета может быть выставлена по абсолютно любому направлению. Пилоты привыкли, что курс 0° – это на север, 90° – на восток и т.д. Поэтому, чтобы численные значения гир

Основные сведения о курсовых системах. Режим магнитной коррекции.
Каждый из двух рассмотренных принципов измерения курса – магнитный и гироскопический – имеет свои достоинства и недостатки. Магнитный компас обладает тем достоинством, что позволяет именно

Режим магнитной коррекции
Как уже отмечалось, в режиме «ГПК» курсовая система работает аналогично обычному гирополукомпасу, поэтому этот режим не требует дополнительного отдельного рассмотрения. Рассмотрим работу к

Понятие о радиовысотомерах
Радиовысотомер (РВ) является автономным радиотехническим устройством. Это означает, что для его работы используются радиоволны и не требуется какого-либо оборудования на земле. Разл

Принцип работы, устройство и погрешности барометрического высотомера.
По принципу своего устройства барометрический высотомер по сути представляет собой барометр-анероид с тем лишь отличием, что его шкала отградуирована не в единицах давления, а в единицах выс

Погрешности барометрического высотомера
Барометрический высотомер имеет ряд погрешностей, различающихся по вызывающим их причинам. Погрешности, вызванные разными факторами, складываются, образуя одну общую погрешность – разность между пр

Уровни начала отсчета барометрической высоты
В принципе, путем установки давления на шкале барометрического высотомера пилот может сам выбрать уровень, от которого он желает отсчитывать высоту. Но с точки зрения безопасности полетов необходим

Правила установки давления на шкале барометрического высотомера
Рассмотрим порядок установки давления при полете по ППП. Традиционная технология, принятая в нашей стране, предусматривает, что перед вылетом все члены экипажа на своих высотомерах

Однострелочные указатели скорости
В уравнение Бернулли входят плотности воздуха ρ в обоих сечения струйки. Для небольших скоростей (до 400-450 км/ч) и высот полета (до 4000-5000 м) воздух можно считать несжимаемым

Комбинированные указатели скорости
На больших скоростях и высотах разность истинной и приборной скоростей становится уже значительной. Кроме того, на больших скоростях и высотах начинает заметно сказываться сжимаемость воздуха. Поэт

Погрешности указателей скорости
Инструментальные погрешности ΔVи возникают из-за несовершенства конструкции прибора и неточности его регулировки. Каждый экземпляр прибора имеет свои значения инструментальны

Понятие о счислении
При выполнении любого полета члены летного экипажа должны в любой момент времени знать текущее местонахождение ВС. Определение места самолета – одна из основных задач аэронавигации. В аэронавигации

Графическое счисление пути
Полная прокладка. Целью полной прокладки является определение текущего МС и поэтому она, конечно, выполняется во время полета. Не следует думать, что в каждом полете пилот или штурман выполн

Принцип автоматизированного счисления частноортодромических координат.
Счисление – это расчет текущих координат, поэтому основной частью любой автоматизированной системы счисления пути является навигационный вычислитель. Он может быть аналоговым, то есть основа

ДИСС. Курсодоплеровское и курсовоздушное счисление.
Доплеровский измеритель скорости и сноса (ДИСС) – бортовое радиотехническое устройство, позволяющее измерять на борту ВС его путевую скорость и угол сноса. ДИСС основан на использов

Основные правила аэронавигации. Контроль пути и его виды.
На протяжении всего полета экипаж обязан выполнять следующие основные правила аэронавигации. 1) Контроль выдерживания заданной траектории полета с периодичностью, необходимой для обеспечен

Визуальная ориентировка.
Визуальная ориентировка – способ определения МС, основанный на сличении карты с пролетаемой местностью. Для визуальной ориентировки используются ориентиры. Навигационный ориентир

Обобщённый метод линий положения. Навигационный параметр, поверхность и линия положения.
Навигационный параметр. Место самолета можно определить с помощью различных технических, в том числе радионавигационных средств и разными методами. Но как показал профессор В.В

Поверхность и линия положения.
Если в какой-то точке пространства навигационный параметр имеет какое-то определенное значение, то это не вовсе не значит, что в других точках его значения должны быть обязательно другие. Наверняка

Виды линий положения.
В навигации чаще всего используются навигационные параметры, которые являются геометрическими величинами, то есть расстояниями, углами и пр. В этом случае каждому виду навигационного параметра соот

Виды погрешностей. Средняя квадратическая погрешность.
Виды погрешностей. Практически всегда погрешность включает в себя две составляющие ее части: систематическую и случайную. Δa= Δaсист + Δaслуч .

Навигационная характеристика радиокомпасной системы.
Радиокомпасная система включает в себя наземную радиостанцию и бортовой пеленгатор, называемый автоматическим радиокомпасом (АРК). В качестве радиостанций могут использоваться специально установлен

Принцип работы АРК и порядок его настройки.
Принцип работы радиокомпаса основан на направленном приеме радиоволн. АРК включает в себя следующие основные составные части: – поворотную рамочную антенну; – ненаправленную (шлей

Способы полёта на РНТ (пассивный, курсовой, активный).
Способы полета на или от радиостанции. Как показано ранее, КУР не является навигационным параметром, поскольку в одной и той же точке пространства может иметь любое значение в

Контроль пути по направлению с помощью АРК при полёте на и от РНТ.
Условие контроля пути по направлению. Существует общий термин «радионавигационная точка» (РНТ), которым можно обозначать любое наземное радионавигационное средство: ОП

Контроль пути по дальности с помощью АРК.
Контроль пути по дальности – это определение пройденного или оставшегося расстояния до ППМ. Для его выполнения также можно использовать АРК и ОПРС. Но для этого ОПРС, конечно, должна находиться не

Расчёт ИПС и определение МС по двум радиостанциям.
Для решения некоторых навигационных задач, например, для определения МС, необходимо проложить на карте ЛРПС. Для этого необходимо сначала определить пеленг самолета. Поскольку на любой карте нанесе

Определение места самолета по двум радиостанциям
Определение места самолета – это полный контроль пути, поскольку если известно место самолета, то можно определить и уклонение от ЛЗП (контроль пути по направлению), и пройденное или оставшееся рас

Исправление пути с выходом в ППМ и с углом выхода.
Исправление пути с выходом в ППМ. Исправление пути это действия по выводу ВС на заданную траекторию после того, как отклонение от нее обнаружено. Один из способов испр

Исправление пути с углом выхода
Ранее в главе 1 уже был рассмотрен один из способов исправления пути – с выходом в ППМ. Но такой способ в гражданской авиации применим главным образом при небольших линейных уклонениях, например, н

Указатели типа РМИ и УГР. Полёт по ЛЗП с их использованием.
Наиболее распространены так называемые радиомагнитные индикаторы (РМИ). По-английски они называются точно так же – Radio Magnetic Indicator (RMI). В некоторых типах отечественных навигационных комп

Полет в створе радиостанций
Если полет должен выполняться по ЛЗП, на которой установлены две радиостанции, то говорят о полете в створе радиостанций. Если ВС летит между РНТ (одна впереди, а другая сзади), то створ называется

Минимальная и максимальность действия РНС.
Минимальная дальность действия. В вертикальной плоскость диаграмма направленности большинства наземных радионавигационных средств (радиостанций, радиомаяков) выглядит примерно

Навигационная характеристика радиопеленгаторной системы.
Характеристика радиопеленгаторной системы. Радиопеленгаторная система является в первую очередь средством управления воздушным движением (УВД). С ее помощью диспетчер УВД на зе

Радиомаячная система VOR и её применение для полёта по ЛЗП, определение МС.
Принцип действия VOR. Радиомаячная угломерная система VOR (Very High Frequency Omni-directional Range) включает в себя наземное оборудование – радиомаяк VOR, и бортовое оборудо

Определение места самолета по одной радиостанции
В соответствии с обобщенным методом линий положения для определения МС необходимо два навигационных параметра и две соответствующие им линии положения. Казалось бы, что если радиостанция только одн

Принцип действия дальномерных систем. Наклонная и горизонтальная дальности.
Характеристика DME. Дальномерная радионавигационная система (ДРНС) включает в себя наземное оборудование (дальномерный радиомаяк) и бортовое оборудование (самолетный дальномер)

Навигационная характеристика наземных РЛС и их применение для контроля и исправления пути.
Понятие о радиолокации. Под радиолокацией (от «радио» и location (лат.) – определять местоположение) в широком смысле слова понимают способы определения местоположения и характ

Понятие о зональной навигации.
Навигационное наведение. Невозможно понять, что такое зональная навигация, да и современная навигация вообще, если не иметь представления о таком понятии, как навигационное нав

Принцип работы бортовой РЛС. Органы управления БРЛС «Гроза».
Бортовая радиолокационная станция (БРЛС) является автономным радиотехническим средством, позволяющим наблюдать радиолокационное изображение пролетаемой местности и окружающей воздушной обстановки,

Способы определения МС с помощью БРЛС (угломерный, дальномерный, угломерно-дальномерный).
С помощью БРЛС можно определить МС гораздо точнее, чем обзорно-сравнительным способом. Для этого на экране локатора нужно измерить курсовой угол и дальность до ориентира. Курсовой угол ори

Обзорно-сравнительный способ ориентировки по БРЛС и определение с её помощью путевой скорости и угла сноса.
Благодаря тому, что на экране БРЛС формируется изображение пролетаемой местности, пилот может вести ориентировку путем сопоставления радиолокационного изображения с полетной картой, наподобие того,

Определение путевой скорости и угла сноса по БРЛС
Определение путевой скорости. Все ориентиры на экране по мере движения ВС перемещаются в сторону, противоположную направлению движения ВС, то есть, на экране примерно вниз. Име

Принцип инерциального счисления пути
Инерциальные навигационные системы (ИНС) основаны на измерении ускорений ВС по осям системы координат. Ускорения измеряются устройствами, называемыми акселерометрами. Принцип действия

Параметры, определяемые с помощь ИНС. Бесплатформенные ИНС.
Параметры, определяемые с помощью ИНС.Инерциальные системы предназначены для определения координат места самолета. Но в процессе их определения можно получить значения многих д

Бесплатформенные инерциальные навигационные системы
На протяжении многих десятилетий усилия инженеров, разрабатывавших традиционные ИНС, были направлены на уменьшение собственного ухода гироскопов, удерживающих гироплатформу в заданном положении. Не

Расчёт курса, скорости и времени по известному ветру.
Рассмотрим порядок решения задачи на примере со следующими исходными данными: V = 400; ЗМПУ =232; δ =290; U = 70; S = 164; ΔМ= –4.

Определение ветра в полёте.
Дано: V=680; W=590; МК=312; УС=+8; ΔМ= –4. Найти: δн , δ, U.

Расчёт истинной скорости по широкой стрелке.
Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле: Vи = Vпр + ΔVи + ΔVa + ΔVсж + ΔV

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги