рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гамма-функция

Гамма-функция - раздел Математика, ОСНОВЫ ДИСКРЕТНОЙ МАТЕМАТИКИ Биномиальная Теорема Определяет Биномиальные Коэффициенты Через Факториалы Чи...

Биномиальная теорема определяет биномиальные коэффициенты через факториалы чисел n и k:

.

По сути, факториал является функцией аргумента n. Однако это дискретная (решетчатая) функция, определенная только при целых значениях аргумента n = 1, 2, … Поэтому формула (6.2) пригодна только для целых n.

Возникает вопрос: существует ли непрерывная функция непрерывного аргумента n, которая в частных случаях целого аргумента n = n равнялась бы ? На этот вопрос следует дать положительный ответ. Такая функция существует и называется она гамма-функцией (Г-функцией). Эта функция обладает свойством: . Ее график приведен на рис. 6.3.

Гамма-функция определяется с помощью интеграла Эйлера:

,

где n > 0.

При n £ 0 интеграл расходится. В этом интервале с помощью интеграла Эйлера гамма-функция не может быть определена. При n = 1 имеем:

.

Приняв в интеграле Эйлера x = t2, получим

.

Приравняв n = 1/2 , имеем

.

 

Рис. 6.3. График гамма-функции

 

Применим к интегралу Эйлера формулу интегрирования по частям: , полагая ; ; ; .

.

Это основная формула приведения для Г-функции. Из нее следует, что

.

Применив эту формулу последовательно k раз, получим:

, (n – k > 0).

В математических справочниках значения гамма-функции обычно даются лишь для величин v, лежащих в диапазоне 1 < n < 2. чтобы найти значение Г-функции в другом диапазоне, нужно использовать приведенную формулу. Для нахождения Г(n) при n > 2 мы должны выбирать целое k > 0 таким образом, чтобы выполнялось условия: 1 £ nk < 2.

Если n = n, где n > 0 – целое число, то

Г (n)=(n – 1)!

Применив формулу приведения для n = n + 1/2 и учитывая, что , получим

,

где (2n – 1)!! = .

До сих пор мы считали, что аргумент n функции Г(n) больше нуля. Доопределим теперь функцию гамма для отрицательных значений аргумента. Учитывая формулу приведения, запишем:

.

Положим = n*, тогда

.

Обозначив в последней формуле n* снова через n, получим

.

Если n + k > 0 и … (k = 1, 2, 3,...), то правая часть формулы имеет смысл и при n < 0. Последнюю формулу принимают за определение гамма-функции при отрицательных значениях аргумента n. Очевидно, она не существуют при целых отрицательных значениях n (при таких значениях n она обращается в бесконечность).

Теперь мы можем обобщить биномиальную теорему на случай действительных (и даже комплексных чисел).

Теорема 6.2. Пусть – произвольное комплексное число. Тогда для любого комплексного числа , удовлетворяющего условию , справедливо

, (6.3)

где .

Пример 6.1. Приведем примеры некоторых биномиальных разложений, полученных с помощью формулы (6.3):

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВЫ ДИСКРЕТНОЙ МАТЕМАТИКИ

ОСНОВЫ ДИСКРЕТНОЙ МАТЕМАТИКИ... Литература...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гамма-функция

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Счетные и несчетные числовые множества
Теория множеств появилась в конце 19 века благодаря работам немецкого математика Георга Кантора (1845-1918). Понятие множества принадлежит к числу фундаментальных неопределяемых понятий математики.

Позиционные и непозиционные системы
Системой счисления называется метод записи чисел в виде комбинаций графических символов. Число – это некоторая абстрактная сущность для описания количества, а цифры – знаки, ис

Десятичная система
Существуют различные позиционные системы исчисления, отличающиеся между собой количеством используемых знаков. Чтобы различать числа в разных системах исчисления, в конце числа ставят индекс – симв

Двоичная система
Двоичная (бинарная) система счисления является самой простой из всех позиционных систем. Она содержит только два символа 0 и 1, и используется в компьютерной технике благодаря своей простоте и высо

Код Грея
Помимо двоичных чисел на практике применяются и другие коды, использующие два знака: 0 и 1. В этом разделе мы познакомимся с кодом Грея. При сортировке данных естественным представлением является о

Троичная система счисления
Троичная система счисления– позиционная система счисления с целочисленным основанием равным 3. Она существует в двух вариантах: несимметричная и симметричная трои

Восьмеричная и шестнадцатеричная системы счисления
Позиционную систему счисления можно построить по любому основанию. Однако наибольшее практическое значение имеют: двоичная, десятичная, восьмеричная и шестнадцатеричная. Причем, последние две испол

Канторово множество
Математика изобилует парадоксальными объектами. Одним из них является канторово множество. Оно описывается следующим образом. Рассмотрим единичный отрезок, показанный на рис. 3.1. Удалим из

Ковер Серпинского и снежинка Коха
Ковер Серпинского получается из единичного квадрата удалением средней части (1/3, 2/3)*(1/3, 2/3), затем удалением из каждого квадрата (i/3, i+1/3)*(j/3, j+1/3) с

Стохастические фракталы
Стохастические фракталы получаются в том случае, если в итерационном процессе случайным образом менять какие-либо параметры. При этом получаются объекты, очень похожие на природные – несимметричные

Энтропийная размерность
Пусть X – компактное пространство с метрикой d. Тогда множество называется r-плотным

Фрактал Мандельброта
Существует бесконечное множество различных фракталов. Один из них носит имя Мандельброта. Фрактал Мандельброта – это множество точек на комплексной плоскости, для которых итеративная последо

Виды доказательства
Древние греки сформулировали основные правила логического доказательства. Они различали два вида доказательства: дедукцию и индукцию. Дедукция – это доказательство от общего

Переменные и формулы в исчислении высказываний
Переменная, значениями которой являются высказывания, называется пропозициональной переменной. Понятие пропозициональной формулы вводится по индукции

Булевы функции
Функция , у которой аргументы пробегают множество {0,1} и которая принимает значение из того же множества

Предикаты
Применяемые в математике высказывания обычно представляют собой описание свойств каких-либо математических объектов или описаний отношений, существующих между этими объектами. Для анализа закономер

Семантика исчисления предикатов
Исчисление предикатов (так же как и исчисление высказываний) являются, прежде всего, языками. И эти языки можно применять не только в математике. Используя их слова, фразы и предложения, мы можем п

Равно(плюс(два, три), пять)
«Некоторые люди любят грибы» X(личность(Х)

Правила логического вывода
Возможность логически выводить новые правильные выражения из набора истинных утверждений – это важное свойство исчисления предикатов. Логически выведенные выражения корректны, потому что они совмес

Правило резолюции
Правило резолюции (лат. resolutio – решение ): если выражения PA

Парадокс Рассела
Задание множеств характеристическим предикатом может приводить к противоречиям. Например, все рассмотренные в примерах множества не содержат себя в качестве элемента. Рассмотрим множество всех множ

Сравнение множеств
Множество содержится в множестве

Свойства операций над множествами
Пусть задан универсум . Тогда

Проблема континуума
Кантор был первым, кто стал рассматривать мощности (кардинальные числа) бесконечных множеств. Мощность счетного множества он обозначил древнееврейской буквой «алеф» с нулевым индексом:

Сумма нечетных чисел
Математическая индукция играет огромную роль в дискретной математике (именно в силу ее дискретного характера). Полученные этим методом доказательства в данной области математики почти столь же наде

Сумма натуральных чисел
А теперь используем метод индукции для доказательства того, что сумма первых n положительных целых чисел равна

Снова считаем подмножества
Доказывая теорему 5.1. мы неявно пользовались методом математической индукции. Теперь пришло время применить его явно. Итак, мы подозреваем, что число всех подмножеств множества из n элемент

Биномиальные коэффициенты
Слово бином означает выражение, состоящее из двух членов, например: x + y. Бином является частным случаем полинома. Биномом Ньютона наз

Треугольник Паскаля
Французский математик Блез Паскаль (1623-1662) составил таблицу из биномиальных коэффициентов. Она получилась треугольной, поскольку с увеличением степени бинома количество коэффициентов также увел

Бином Ньютона для дробных и отрицательных показателей
Формула бинома Ньютона (6.1) для целых положительных показателей была известна задолго до Исаака Ньютона (1643-1727), но им в 1676 году была указана возможность распростране

Размещения без повторений
Общее число размещений без повторений из n элементов по k элементов обычно обозначается так:

Сочетания без повторений
Число различных сочетаний без повторений обычно обозначается так: . Или так

Размещения с повторением
Если мы выбираем из множества n элементов размещения с повторениями k элементов, то в данном случае k может превосходить n. Теорема 7.3. Об

Сочетания с повторением
Теорема 7.4. Общее число сочетаний с повторениями k элементов, взятых из совокупности n различных элементов, равно

Формула Стирлинга
Рассматривая комбинаторные задачи, мы часто сталкиваемся с факториалами. Факториал – это очень быстро растущая функция, она растет быстрее экспоненты. При достаточно больших n (n >

Подстановки
Взаимно однозначная функция называется подстановкой на

Задача Фибоначчи
Итальянский математик Леонардо Фибоначчи жил в 13 столетии и одним из первых в Европе стал использовать арабские (индийские) цифры. Он придумал несколько искусственную задачу о кроликах, которых вы

Сумма чисел Фибоначчи
Определим сумму первых n чисел Фибоначчи. 0 = 0, 0+1 = 1, 0+1+1 = 2, 0+1+1+2 = 4, 0+1+1+2+3 = 7, 0+1+1+2+3+5 = 12, 0+1+1+2+3+5+

Формула для чисел Фибоначчи
Теорема 8.1. Числа Фибоначчи можно рассчитать по формуле .

Простые числа
Все натуральные числа, большие единицы, распадаются на два класса. К первому относятся числа, имеющие ровно два натуральных делителя, единицу и самого себя, ко второму – все остальные. Числа первог

Алфавитное кодирование
Кодирование может сопоставлять код всему сообщению из множества

Помехоустойчивое кодирование
Пусть имеется канал связи C, содержащий источник помех: , где S – множес

Модулярная арифметика
В этом разделе все числа – целые. Говорят, что число a сравнимо по модулю n с числом b (обозначение

Шифрование с открытым ключом
Шифрование с открытым ключом производится следующим образом. 1. Получателем сообщений производится генерация открытого ключа (пара чисел n и e) и закрытого ключа (число d

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги