рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Закон Кулона

Закон Кулона - Лекция, раздел Физика, Фейнмановские лекции по физике ...


 

 

(4.9)


здесь F1 — сила, действующая на заряд q1; е12 — единичный вектор, направленный от q2 к q1 , а г12— расстояние между q1 и q2. Сила F2, действующая на q2, равна и противоположна силе F1. Множитель пропорциональности по историческим причи­нам пишется в виде 1/4яе0. В системе единиц СИ, которой мы пользуемся, он определяется как 10-7 от квадрата скорости света. Так как скорость света примерно 3•108 м/сек, то множи­тель приблизительно равен 9•109, и единица оказывается рав­ной ньютонм2/кулон2, или вольт м/кулон

 

(4.10)

Если зарядов больше двух (а именно такие случаи наи­более интересны), то закон Кулона нужно дополнить другим существующим в природе фактом: сила, действующая на заряд, есть векторная сумма кулоновских сил, действующих со сто­роны всех прочих зарядов. Этот экспериментальный факт на­зывается «принципом наложения», или «принципом суперпозиции». Это и есть все, что имеется в электростатике. Если доба­вить к закону Кулона принцип наложения, то больше ничего в ней не останется. Точно к таким же выводам, ни больше, ни меньше, приведут уравнения электростатики, уравнения (4.5) и (4.6).

 


 

 


Применяя закон Кулона, удобно ввести понятие об электри­ческом поле. Мы говорим, что поле Е(1) — это сила, действую­щая со стороны прочих зарядов на единицу заряда q1 . Деля (4.9) на q1 ,мы получаем для действия всех зарядов, кроме q1,

 

(4.11)

Кроме того, мы считаем, что Е(1) описывает нечто, существую­щее в точке (1), даже если в ней нет заряда q1 (в предположении, что все прочие заряды сохранили свои позиции). Мы говорим: Е(1) — это электрическое поле в точке (1).

Электрическое поле Е — это вектор, так что в (4.11) на са­мом деле написаны три уравнения, по одному для каждой ком­поненты. Расписывая x-компоненту в явном виде, получаем


 

(4.12)

и точно так же для остальных компонент.

Если зарядов много, то поле Е в любой точке (1) равно сумме вкладов от всех зарядов. Каждый член в сумме будет выглядеть как (4.11) или (4.12). Пусть qj величина j-го заряда, а г1j — смещение qj от точки (1); тогда мы напишем


 


(4.13)

 

 

Фиг. 4.1. В точке (1)электрическое поле Е от некоторо­го распределения зарядов полу­чается из интеграла по рас­пределению.

Точка (I) может находится также внутри распределения.

что означает, конечно,


 

и т. д.

Часто бывает удобно игнорировать тот факт, что заряды всегда существуют в виде отдельных кусочков, таких, как элект­роны или протоны, а считать, что они размазаны сплошным пятном, или, как говорят, описываются «распределением». До тех пор пока нам все равно, что происходит в малых масшта­бах, такое описание вполне законно. Распределение заряда описывается «плотностью заряда» r (х, у, z). Если количество заряда в небольшом объеме DV2 близ точки (2) есть Dq2, то r определяется равенством

 

 


 

(4.15)


Пользуясь теперь законом Кулона при непрерывном рас­пределении заряда, мы заменяем в уравнениях (4.13) или (4.14) суммы интегралами по всему объему, содержащему заряды. Получается

 

(4.16)

Некоторые предпочитают писать


 

 


где r12 — вектор смещения от (2) к (1) (фиг. 4.1). Интеграл для Е тогда запишется в виде

 

 

(4.17)


Если мы хотим действительно провести интегрирование до конца, то обычно приходится интегралы расписывать подробнее. Для x-компоненты уравнений (4.16) или (4.17) получается

 

Мы не собираемся вычислять что-либо по этой формуле. Написали мы ее здесь только для того, чтобы подчеркнуть, что мы полностью решили те электростатические задачи, в которых известно расположение всех зарядов.

Дано: Заряды.

Определить: Поля.

Решение: Возьми этот интеграл.

Так что по существу все сделано; остается только проделать сложные интегрирования по трем переменным. Эта работа в са­мый раз для счетной машины!

Пользуясь этими интегралами, мы можем найти поле за­ряженной плоскости, заряженной линии, заряженной сферы и любого выбранного распределения. Хотя мы сейчас начнем чер­тить силовые линии, говорить о потенциалах и вычислять ди­вергенции, важно понимать, что ответ на все решаемые задачи в принципе уже готов. Просто порой бывает легче взять интег­рал, придумав фокус, чем проделывать все выкладки чест­но. Но чтобы догадываться, нужно научиться разным ухищ­рениям. Быть может, лучше было бы вычислять интегралы не­посредственно, а не тратить силы на остроумные способы реше­ния да демонстрировать свою сообразительность. Но все-таки мы пойдем по пути развития сообразительности. Переходим, таким образом, к обсуждению некоторых других особенностей электрического поля.

– Конец работы –

Эта тема принадлежит разделу:

Фейнмановские лекции по физике

Этим выпуском мы начинаем печатание перевода второго тома лекций, прочитанных Р. Фейнманом студентам второго курса. «Фейнмановские лекции по физике», вы будете понемногу приобщаться к живой, развивающейся науке.....

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Закон Кулона

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Электрические силы
Рассмотрим силу, которая, подобно тяготе­нию, меняется обратно квадрату расстояния, но только в миллион биллионов биллионов биллионов раз более сильную. И которая от­личается еще в одном. Пу

Электрические и магнитные поля
Первым делом нужно несколько расширить наши представ­ления об электрическом и магнитном векторах Е и В. Мы опре­делили их через силы, действующие на заряд. Теперь мы наме­реваемся говорить об элект

Характеристики векторных полей
Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зад

Законы электромагнетизма
Первый закон электромагнетизма описывает поток электри­ческого поля:  

Что это такое — «поля»?
Сделаем теперь несколько замечаний о принятом нами спо­собе рассмотрения этого вопроса. Вы можете сказать: «Все эти потоки и циркуляции чересчур абстрактны. Пусть в каждой точке пространства есть э

Электромагнетизм в науке и технике
В заключение мне хочется закончить эту главу следующим рассказом. Среди многих явлений, изучавшихся древними грека­ми, были два очень странных. Первое: натертый кусочек янта­ря мог поднять маленьки

Понимание физики
Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явле­ние может оказаться слишко

Скалярные и векторные поля — Т и h
Мы начинаем сейчас рассмотрение абстрактного, математи­ческого подхода к теории электричества и магнетизма. Наша цель — объяснить смысл законов, написанных в гл. 1. Но для этого надо сперва объясни

Производные полей — градиент
Когда поля меняются со временем, то их изменение можно описать, задав их производные по t. Мы хотим также описать и их изменение в пространстве, потому что мы интересуемся связью, скажем, ме

Выбрав удобную систему координат, мы можем написать
Т1 = Т(х, у, z) и Т2=Т(х + Dх, у + Dу, z + Dz), где Dx:, Dy, Dz — компоненты вектора DR (фиг. 2.5). Вспомнив (2.7), напишем

Дифференциальное уравнение потока тепла
Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется со­вершенно четко. Известно, что есл

Если площадь этой плиты DА, то поток тепла за единицу времени равен
  (2.42) Коэффициент пропорциональности c (каппа) называется тепло­проводностью.

Вторые производные векторных полей
Пока мы имели дело только с первыми производными. А почему не со вторыми? Из вторых производных можно соста­вить несколько комбинаций:

Криволинейный интеграл от Ñψ
В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено до­вольно много, все их можно подытожи

Поток векторного поля
Прежде чем рассматривать следующую интегральную теоре­му — теорему о дивергенции,— хотелось бы разобраться в од­ной идее, смысл которой в случае теплового потока легко усваи­вается. Мы уже определи

Поток из куба; теорема Гаусса
Рассмотрим теперь частный случай потока из маленького ку­бика и получим интересную формулу. Ребра куба пусть нап­равлены вдоль осей координат (фиг. 3.5), координаты вершины, ближайшей к началу, сут

Теплопроводность; уравнение диффузии
Чтобы привыкнуть к теореме, разберем на примере, как ее применяют. Обратимся опять к распространению тепла, скажем в металле, рассмотрим совсем простой случай: все тепло было подведено к телу заран

Циркуляция векторного поля
Мы хотим теперь рассмотреть ротор поля примерно так же, как рассматривали дивергенцию. Мы вывели теорему Гаусса, вычисляя интеграл по поверхности, хотя с самого начала отнюдь не было ясно, что мы б

Циркуляция по квадрату; теорема Стокса
Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он распо­ложен в одной из координатных

Поля без роторов и поля без дивергенций
Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по лю

Статика
Начнем теперь подробное изучение теории электромагнетизма. Она вся (весь электромаг­нетизм целиком) запрятана в уравнениях Мак­свелла:

Магнитостатика
    Обратите внима

Электрический потенциал
Для начала усвоим понятие электрического потенциала, связа

Электростатический потенциал
  (4.22) Часто очень удобно брать

Поток поля Е
Теперь мы хотим вывести уравнение, которое непосредст­венно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обра

Закон Гаусса; дивергенция поля Е
Наш изящный результат — уравнение (4.32) — был дока­зан для отдельного точечного заряда. А теперь допустим, что имеются два заряда: заряд ql—в одной точке и заряд (q2 —

Поле заряженного шара
Одной из самых трудных задач, которую пришлось нам ре­шать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как

Линии поля; эквипотенциальные поверхности
Теперь мы собираемся дать геометрическое описание электро­статического поля. Два закона электростатики: один — о пропор­циональности потока и внутреннего заряда и другой — о том, что электрическое

Электростатика—это есть закон Гаусса плюс...
Существуют два закона электростатики: поток электрического поля из объема пропор­ционален заряду внутри него — закон Гаусса, и циркуляция электрического поля равна нулю — Е есть градиент. Из этих д

Равновесие в электростатическом поле
Рассмотрим сначала следующий вопрос: в каких условиях точе

Равновесие с проводниками
В системе закрепленных зарядов устойчивого места для пробного заряда нет. А как обстоит дело с системой заряженных проводников? Может ли система заряженных проводников соз­дать поле, в котором для

Устойчивость атомов
Раз заряды не могут иметь устойчивого положения, то, разу­меется, неправильно представлять вещество построенным из ста­тических точечных зарядов (электронов и протонов), управляе­мых только

Поле заряженной прямой линии
Закон Гаусса может быть применен для решения множества задач, связанных с электрическим полем, обладающим специаль­ной симметрией (чаще всего сферической, цилиндрической или плоской). В оставшейся

Заряженная плоскость; пара плоскостей
В качестве другого примера рассчитаем поле однородно заряженного плоского листа. Предположим, что лист имеет бесконечную протяженность и заряд на единицу площади равен а. Сразу приходит в голову сл

Однородно заряженный шар; заряженная сфера
В гл. 4 мы уже применяли закон Гаусса, когда должны были найти поле вне однородно заряженной шаровой области. Тот же метод может дать нам и поле в точках внутри шара. Этот рас­чет, например,

Точен ли закон Кулона?
Если мы вглядимся чуть пристальнее в то, как поле в

Поля проводника
Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В ме­талле бывает та

Поле внутри полости проводника
Вернемся теперь к проблеме пустотелого резервуара — про­водника, имеющего внутри полость. В металле поля нет, а вот есть ли оно в полости? Покажем, что если полость пуста, то п

Уравнения электростатического потенциала
В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятель­ствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математи­ческими методами, испол

Электрический диполь
Сначала возьмем два точечных заряда +q и -q,

Замечания о векторных уравнениях
Здесь, пожалуй, уместно сделать общее замечание, касаю­щееся векторного анализа. Хотя его теоремы и доказаны в общем виде, однако, приступая к расчетам и анализу какой-либо за­дачи, следует с толко

Диполъный потенциал как градиент
Мы хотели бы теперь отметить любопытное свойство формулы д

Дипольное приближение для произвольного распределения
Столь же интересно и не менее важно поле диполя, возни­кающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас и

Поля заряженных проводников
Мы покончим на этом с примерами таких физических задач, в которых распределение зарядов известно с самого начала. Такие задачи решаются без особых затруднений, в худшем слу­чае требуя нескольких ин

Метод изображений
Мы определили поле двух точечных зарядов. На фиг. 6.8 показаны некоторые линии поля и эквипотенциальные поверх­ности, полученные из расчетов, приведенных в гл. 5. Рассмот­рим теперь эквипотенциальн

Точечный заряд у проводящей плоскости
В качестве простейшего применения этого метода используем плоскую эквипотенциальную поверхность В (см. фиг. 6.8). Она поможет нам решить задачу о заряде вблизи проводящей плоскости. Для этог

Точечный заряд у проводящей сферы
А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом q вблизи нее (фиг. 6.11

Конденсаторы; параллельные пластины
Теперь обратимся к другому роду задач, связанных с про­водниками. Рассмотрим две широкие металлические пластины, параллельные между собой и разделенные узким (по сравнению с их размерами) промежутк

Пробой при высоком напряжении
Сейчас мы качественным образом рассмотрим некоторые ха­рактеристики полей вокруг проводников. Зарядим электри­чеством проводник, но на сей раз не сферический, а такой, у ко­торого есть острие или р

Ионный микроскоп
Сверхвысокое электрическое поле, окружающее всякий острый выступ заряженного проводника, получило интересное применение в одном приборе. Работа ионного микроскопа обус­ловлена мощными полями

Методы определения электростатического поля
В этой главе мы продолжим рассмотрение характеристик электрических полей в различ­ных условиях. Сперва мы опишем один из наи­более разработанных методов расчета полей в присутствии проводников. Мы

Двумерные поля; функции комплексного переменного
Комплексная величина з определяется так:  

Колебания плазмы
Займемся теперь такими физическими задачами, в которых поле создается не закрепленными зарядами и не зарядами на проводящих поверхностях, а сочетанием обоих факторов. Ины­ми словами, полем управляю

Коллоидные частицы в электролите
Обратимся к другому явлению, когда местоположение заря­дов определяется потенциалом, создаваемым в какой-то степени самими зарядами. Такой эффект существен для поведения коллоидов. Коллоид — это вз

Электростатическое поле сетки
Напоследок мы хотим изложить еще одно интересное свой­ство электрических полей. Оно используется в электрических приборах, электронных лампах и для других целей. Речь идет о поведении электрическог

Электростатическая энергия зарядов. Однородный шар
Одно из самых интересных и полезных от­крытий в механике —это закон сохранения энер­гии. Зная формулы для кинетической и потен­циальной энергий механической системы, мы способны обнаруживать связь

Энергия конденсатора. Силы, действующие на заряженные проводники
Рассмотрим теперь энергию, требуемую на то, чтоб зарядить конденсатор. Если заряд Q был снят с одной обкладки конден­сатора и перенесен на другую, то между обкладками возникает разность поте

Электростатическая энергия ионного кристалла
Рассмотрим теперь применение понятия электростатической энергии в атомной физике. Мы не можем запросто измерять силы, действующие между атомами, но часто нас интересует разница в энергиях двух расс

Электростатическая энергия ядра
Обратимся теперь к другому примеру электростатической энергии в атомной физике — к электростатической энергии атомного ядра. Прежде чем заняться этим вопросом, мы должны рассмотреть некоторые свойс

Энергия в электростатическом поле
Рассмотрим теперь другие способы подсчета электростатичес­кой энергии. Все они могут быть получены из основного соот­ношения (8.3) суммированием (по всем парам) взаимных энергий каждой пары зарядов

Энергия точечного заряда
Новое соотношение (8.35) говорит нам, что даже у отдель­ного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением

Градиент электрического потенциала в атмосфере
В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное элект­рическое поле Е

Электрические токи в атмосфере
Помимо градиента потенциала, можно измерять и другую величину — ток в атмосфере. Плотность его мала: через каждый квадратный метр, параллельный земной поверхности, проходит около 10-6

Происхождение токов в атмосфере
Теперь нужно ответить на вопрос об источнике больших отрицательных токов, которые должны течь от «верха» к земной поверхности, чтобы поддержать ее отрицательный заряд. Где же те батареи, которые эт

Механизм распределения зарядов
Теперь мы хотим обратиться к обсуждению самой важной для нас стороны дела — к возникновению электрических заря­дов. Разного рода эксперименты, включая полеты сквозь грозо­вой фронт (пилоты, соверша

Диэлектрическая проницаемость
Сейчас мы разберем еще одно характерное свойство материи, возникающее под влиянием электрического поля. В одной из предыдущих глав мы рассмотрели поведение проводников, в которых заряды под

Вектор поляризации Р
Продолжив наш анализ, мы обнаружим, что идея о проводя­щих и непроводящих участках не так уж существенна. Любой из маленьких шариков действует как диполь, момент которого создается внешним полем. Д

Поляризационные заряды
Посмотрим теперь, что дает эта модель для конденсатора с диэлектриком. Рассмотрим сначала лист материала, в котором на единицу объема приходится дипольный момент Р. Полу­чится ли в результате в сре

Уравнения электростатики для диэлектриков
Давайте теперь свяжем полученные нами результаты с тем, что мы уже узнали в электростатике. Основное уравнение имеет вид

Поля и силы в присутствии диэлектриков
Мы докажем сейчас ряд довольно общих теорем электроста­тики для тех случаев, когда имеются диэлектрики. Мы уже видели, что емкость плоского конденсатора при заполнении его диэлектриком увеличиваетс

Молекулярные диполи
В этой главе мы поговорим о том, почему вещество бывает д

Электронная поляризация
Займемся сначала поляризацией неполярных молекул. Начнем с простейшего случая одноатомного газа (например, гелия). Когда атом такого газа находится в электрическом поле, электроны его тянутся в одн

Полярные молекулы; ориентационная поляризация
Теперь рассмотрим молекулу, обладающую постоянным дипольным моментом р0 , например молекулу воды. В отсутст­вие электрического поля отдельные диполи смотрят в разных направлениях,

Электрические поля в пустотах диэлектрика
Теперь мы переходим к интересному, но сложному вопросу о диэлектрической проницаемости плотных веществ. Возьмем, например, жидкий гелий, или жидкий аргон, или еще какое-нибудь неполярное вещество.

Следова­тельно, если поле внутри однородного диэлектрика мы назовем Е, то можно записать
E=Eдырка+Eшарнк, (11.23) где Eдырка — поле в дырке, а Eшарик — по­ле в однородно поля­ризованном шарике (фиг. 11.6). Поле одно­родно

Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
В жидкости мы ожидаем, что поле, поляризующее отдель­ный атом, скорее похоже на Едырка, чем просто на Е. Если взять Eдырка из (11.25) в качестве поляризующего поля, вхо­дящего

Твердые диэлектрики
Обратимся теперь к твердым телам. Первый интересный факт относительно твердых тел заключается в том, что у них бывает постоянная поляризация, которая существует даже и без приложения внешнего элект

Сегиетоэлектричество; титанат бария
Мы опишем здесь особый класс кристаллов, которые, можно сказать, почти случайно обладают «встроенным» постоянным электрическим моментом. Ситуация здесь настолько критична, что, если слегка увеличит

Одинаковые уравнения — одинаковые решения
Вся информация о физическом мире, при­обретенная со времени зарождения научного прогресса, поистине огромна, и кажется почти невероятным, чтобы кто-то овладел заметной частью ее. Но фактически физи

Поток тепла; точечный источник вблизи бесконечной плоской границы
Ранее мы уже обсуждали (гл. 3, § 4) поток тепла. Вообразите кусок какого-то материала, необязательно однородного (в раз­ных местах может быть разное вещество), в котором темпера­тура меняется от то

Натянутая мембрана
Рассмотрим теперь совсем другую область физики, в которой тем не менее мы придем снова к точно таким же уравнениям. Возьмем тонкую резиновую пленку — мембрану, натянутую на большую горизонтальную р

Диффузия нейтронов; сферически-симметричный источник в однородной среде
Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой

Безвихревое течение жидкости; обтекание шара
Рассмотрим теперь пример, по существу, не такой уж хоро­ший, потому что уравнения, которые мы будем использовать, на самом деле не описывают новый объект полностью, а отве­чают лишь некоторым идеал

Освещение; равномерное освещение плоскости
В этом параграфе мы обратимся к совсем другой физической проблеме — мы ведь хотим показать большое разнообразие воз­можностей. На этот раз мы проделаем кое-что, что приведет нас к интегралу

Фундаментальное единство» природы
В этой главе мы хотели показать, что, изучая электростати­ку, вы одновременно учитесь ориентироваться во многих во­просах физики и что, помня об этом, можно выучить почти всю физику за несколько ле

Магнитное поле
Сила, действующая на электрический заряд, зависит не только от того, где он находится, но и от того, с какой скоростью он движется. Каждая точка в пространстве характеризуется двумя векторными вели

Электрический ток; сохранение заряда
Подумаем теперь о том, почему магнитные силы дей­ствуют на провода, по которым течет электрический ток. Для этого определим, что понимается под плотностью тока. Элект­рический ток состоит из движущ

Магнитная сила, действующая на ток
Теперь мы достаточно подготовлены, чтобы определить силу, действующую на находящуюся в магнитном поле проволоку, по которой идет ток. Ток состоит из заряженных частиц, дви­жущихся по проволоке со с

Магнитное поле постоянного тока; закон Ампера
Мы видели, что на проволоку в магнитном поле, создавае­мом, скажем, магнитом, действует сила. Из закона о том, что действие равно противодействию, можно ожидать, что, когда по проволоке протекает т

Магнитное поле прямого провода и соленоида; атомные токи
Можно показать, как пользоваться законом Ампера, опреде­л

Относительность магнитныхи электрических полей
Когда мы сказали, что магнитная сила на заряд пропорциональна его скорости, вы, наверное, подумали: «Какой скорости? По отношению к какой системе отсчета?» Из определения В, данного в начале этой г

Преобразование токов и зарядов
Вы, вероятно, были обеспокоены сделанным нами упроще­нием, когда мы взяли одну и ту же скорость v для частицы и электронов проводимости в проволоке. Можно было бы вер­нуться назад и снова проделать

Суперпозиция; правило правой руки
Мы закончим эту главу еще двумя замечаниями по вопро­сам

Векторный потенциал
В этой главе мы продолжим разговор о магнитостатике, т, е. о постоянных магнитных полях и постоянных токах. Магнитное поле и электрические токи связаны нашими основными уравнениями:

Векторный потенциал заданных токов
Раз В определяется токами, значит, и А тоже. Мы хотим теп

Это векторное уравнение, конечно, распадается на три урав­нения
   

Прямой провод
В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, поль­зуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод рад

Длинный соленоид
Еще пример. Рассмотрим опять бесконечно длинный соле­ноид с током по окружности, равным пI на единицу длины. (Мы считаем, что имеется n витков проволоки на единицу дли­ны, несущих каж

Поле маленькой петли; магнитный диполь
Воспользуемся методом векторного потенциала, чтобы найти магнитное поле маленькой петли с током. Как обычно, под словом «маленькая» мы просто подразумеваем, что нас интере­суют поля только на больш

Векторный потенциал цепи
Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упро­стить уравнения для магнитн

Закон Био— Савара
В ходе изучения электростатики мы нашли, что электриче­ск

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги