рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Электростатическая энергия ядра

Электростатическая энергия ядра - Лекция, раздел Физика, Фейнмановские лекции по физике Обратимся Теперь К Другому Примеру Электростатической Энергии В Атомной Физик...

Обратимся теперь к другому примеру электростатической энергии в атомной физике — к электростатической энергии атомного ядра. Прежде чем заняться этим вопросом, мы должны рассмотреть некоторые свойства тех основных сил (называемых ядерными силами), которые скрепляют между собой протоны и нейтроны в ядре. Первое время после открытия ядер — и про­тонов с нейтронами, которые их составляют,— надеялись, что закон сильной, неэлектрической части силы, действующей, на­пример, между одним протоном и другим, будет иметь какой-нибудь простой вид, подобный, скажем, закону обратных квад­ратов в электричестве. Если бы удалось определить этот закон сил и, кроме того, сил, действующих между протоном и нейт­роном и между нейтроном и нейтроном, то тогда можно было бы теоретически описать все поведение этих частиц в ядрах. Поэтому начала разворачиваться большая программа изучения рассеяния протонов в надежде отыскать закон сил, действую­щих между ними; но после тридцатилетних усилий ничего про­стого не возникло. Накопился заметный багаж знаний о силах, действующих между протоном и протоном, но при этом обнару­жилось, что эти силы сложны настолько, насколько возможно себе представить.

Под словами «сложны настолько, насколько возможно» мы понимаем, что силы зависят от всех величин, от каких они могли бы зависеть.

Во-первых, сила не простая функция расстояния между протонами. На больших расстояниях существует притяжение, на меньших — отталкива­ние.

 


 

 

Фиг. 8.6. Сила взаимодейст­вия двух протонов зависит от всех мыслимых параметров.

Зависимость от рас­стояния — это некоторая сложная функция, все еще не очень хорошо известная. Во-вторых, сила зави­сит от ориентации спина протонов. У протонов есть спин, а два взаимодействующих протона могут вращаться либо в одном и том же, либо в про­тивоположных направлениях. И сила, когда спины парал­лельны, отличается от того, что бывает, когда спины антипа­раллельны (фиг. 8.6, а и б). Разница велика; пренебречь ею нельзя.

В-третьих, сила заметно изменяется, смотря по тому, па­раллелен или нет промежуток между протонами их спинам (фиг. 8.6, в и г) или же он им перпендикулярен (фиг. 8.6, а и б).

В-четвертых, сила, как и в магнетизме, зависит (и даже зна­чительно сильнее) от скорости протонов. И эта скоростная зави­симость силы отнюдь не релятивистский эффект; она велика да­же тогда, когда скорости намного меньше скорости света. Бо­лее того, эта часть силы зависит, кроме величины скорости, и от других вещей. Скажем, когда протон движется невдалеке от другого протона, сила меняется от того, совпадает ли орби­тальное движение по направлению со спиновым вращением (фиг. 8.6, д), или эти два направления противоположны (фиг. 8.6, е). Это то, что называется «спин-орбитальной» частью силы.

Не в меньшей степени сложный характер имеют силы вза­имодействия протона с нейтроном и нейтрона с нейтроном. До сего дня мы не знаем механизма, определяющего эти силы, не знаем никакого простого способа их понять.

Впрочем, в одном важном отношении ядерные силы все же проще, чем могли бы быть. Ядерные силы, действующие между двумя нейтронами, совпадают с силами, действующими между протоном и нейтроном, и с силами, действующими между двумя протонами! Если в некоторой системе, в которой имеются ядра, мы заменим нейтрон протоном (и наоборот), то ядерные взаимодействия не изменятся! «Фундаментальная причина» этого равенства нам не известна, но это проявление важного принципа, который может быть расширен на законы взаимодействия других силь­но взаимодействующих ча­стиц, таких, как л-мезоны и «странные» частицы.


Этот факт прекрасно ил­люстрируется расположе­нием уровней энергии в похожих ядрах.

 

 

Фиг. 8.7. Энергетические уровни ядер В11 и С11 (энергии в Мэв). Основное состояние С11 на 1,982 Мэв выше, чем то же состояние В11.

Рассмотрим такое ядро, как В11 (бор-одиннадцать), состоящее из пяти протонов и шести нейтронов. В ядре эти одиннадцать частиц взаимодействуют друг с другом, совершая какой-то замысловатый танец. Но существу­ет такое сочетание всех возможных взаимодействий, кото­рое обладает энергией, наинизшей из возможных; это нормаль­ное состояние ядра, и его называют основным. Если ядро возму­тить (скажем, стукнув по нему высокоэнергичным протоном или еще какой-то частицей), то оно может перейти в любое число дру­гих конфигураций, называемых возбужденными состояниями, каждое из которых будет обладать своей характеристической энергией, которая выше энергии основного состояния. В иссле­дованиях по ядерной физике, скажем проводимых с генератором Ван-де-Граафа, энергии и другие свойства этих возбужденных состояний определяются экспериментально. Энергии пятнад­цати наинизших из известных возбужденных состояний В11 показаны на одномерной схеме в левой половине фиг. 8.7. Гори­зонталь внизу представляет основное состояние. Первое возбуж­денное состояние имеет энергию на 2,14 Мэв выше, чем основ­ное, следующее — на 4,46 Мэв выше, чем основное, и т. д. Иссле­дователи пытаются найти объяснение этой довольно запутанной картины уровней энергии; пока, однако, нет еще полной общей теории таких ядерных уровней энергии.

Если в В11 заменить один из нейтронов протоном, получится ядро изотопа углерода С11. Энергии шестнадцати низших воз­бужденных состояний ядра С11 тоже были измерены; они пока­заны на фиг. 8.7 справа. (Штрихами проведены уровни, для ко­торых экспериментальная информация находится под вопросом.)

Глядя на фиг. 8.7, мы замечаем поразительное подобие меж­ду картинами уровней энергии обоих ядер. Первые возбужден­ные состояния находятся примерно на 2 Мэв выше основного. Затем имеется широкая щель шириной 2,3 Мэв, отделяющая второе возбужденное состояние от первого, затем небольшой скачок на 0,5 Мэв до третьего уровня. Потом опять большой скачок от четвертого до пятого уровня, но между пятым и ше­стым узкий промежуток в 0,1 Мэв. И так далее. Примерно на десятом уровне соответствие, видимо, пропадает, но его все еще можно обнаружить, если пометить уровни другими характе­ристиками, скажем их моментами количества движения, и тем, каким способом они теряют свой избыток энергии.

Впечатляющее подобие картины уровней энергии ядер В11 и С11 — отнюдь не просто совпадение. Оно скрывает за собой некоторый физический закон. И действительно, оно показы­вает, что даже в сложных условиях ядра замена нейтрона про­тоном мало что изменит. Это может значить лишь то, что нейтрон-нейтронные и протон-протонные силы должны быть почти оди­наковыми. Только тогда мы могли бы ожидать, что ядерные конфигурации из пяти протонов и шести нейтронов совпадут с комбинацией «пять нейтронов — шесть протонов».

Заметьте, что свойства этих ядер ничего не говорят нам о нейтрон-протонных силах; число нейтрон-протонных комбина­ций в обоих ядрах одинаково. Но если мы сравним два других ядра, таких, как С14 с его шестью протонами и восемью нейтро­нами и N14, в котором и тех, и других по семи штук, то выявим в энергетических уровнях такое же соответствие. Можно выве­сти заключение, что р—р-, n—n- и р—n-силы совпадают между собой во всех деталях. В законах ядерных сил возник неожидан­ный принцип. Хотя силы, действующие между каждой парой ядерных частиц, очень запутаны, но силы взаимодействия для любой из трех мыслимых пар одни и те же.

Однако есть и какие-то слабые отличия. Точного соответствия уровней нет; кроме того, основное состояние С11 обладает абсо­лютной энергией (массой), которая на 1,982 Мэв выше основного состояния В11. Все прочие уровни тоже по абсолютной величине энергии выше на такое же число. Так что силы не совсем точно равны. Но мы и так хорошо знаем, что полная, величина сил не совсем одинакова; между двумя протонами действуют электриче­ские силы, ведь каждый из них заряжен положительно, а между нейтронами таких сил нет. Может быть, различие между В11 и С11 объясняется тем фактом, что в этих двух случаях различны электрические взаимодействия протонов? А может, и остающаяся ми­нимальная разница в уровнях вызывается электрическими эф­фектами? Раз уж ядерные силы так сильны по сравнению с электрическими, то электрические эффекты могли бы только слегка возмутить энергии уровней.

Чтобы проверить это представление или, лучше сказать, чтобы выяснить, к каким следствиям оно приведет, мы сперва рассмотрим разницу в энергиях основных состояний обоих ядер. Чтобы модель была совсем простой, положим, что ядра — это шары радиуса r (который нужно определить), содержащие Z протонов. Если считать ядро шаром с равномерно распреде­ленным зарядом, то можно ожидать, что электростатическая энергия [из уравнения (8.7)] окажется равной


 

 

(8.22)

где qeэлементарный заряд протона. Из-за того, что Z равно для В11 пяти, а для С11 шести, электростатические энергии бу­дут различаться.


Но при таком малом количестве протонов уравнение (8.22) не совсем правильно. Если мы подсчитаем электрическую энер­гию взаимодействия всех пар протонов, рассматриваемых как точки, примерно однородно распределенные по шару, то увидим, что величину Z2 в (8.22) придется заменить на Z(Z-1), так что энергия будет равна

 

(8.23)


Если известен радиус ядра r, мы можем воспользоваться выра­жением (8.23), чтобы определить разницу электростатических энергий ядер В11 и С11. Но проделаем обратное: из наблюдаемой разницы в энергиях вычислим радиус, считая, что вся суще­ствующая разница по происхождению — электростатическая. В общем, это не совсем верно. Разность энергий 1,982 Мэв двух основных состояний В11 и С11 включает энергии покоя, т. е. энергии тc2 всех частиц. Переходя от В11 к С11, мы замещаем нейтрон протоном, масса которого чуть поменьше. Так что часть разности энергий — это разница в массах покоя нейтрона и протона, составляющая 0,784 Мэв. Та разность, которую надо сравнивать с электростатической энергией, тем самым больше 1,982 Мэв; она равна

 

 


Подставив эту энергию в (8.23), для радиуса В11 или С11 по­лучим

 

 

(8.24)

Имеет ли это число какой-нибудь смысл? Чтобы это прове­рить, сравним его с другими определениями радиусов этих ядер.

Например, можно определить радиус ядра иначе, наблюдая, как рассеивает оно быстрые частицы. В ходе этих измерений выяс­нилось, что плотность вещества во всех ядрах примерно оди­накова, т. е. их объемы пропорциональны числу содержащихся в них частиц. Если через А обозначить число протонов и нейтро­нов в ядре (число, очень близко пропорциональное его массе), то оказывается, что радиус ядра дается выражением


 

(8.25)


где

 

 

(8.26)


Из этих измерений мы получим, что радиус ядра В11 (или С11)должен быть примерно равен

 

 

Сравнив это с выражением (8.24), мы увидим, что наши пред­положения об электростатическом происхождении разницы в энергиях В11 и С11 не столь неверны; расхождение едва ли до­стигает 15% (а это не так уж скверно для первого расчета по теории ядра!).

Причина расхождения, по всей вероятности, состоит в сле­дующем. Согласно нашему нынешнему пониманию ядер, четное количество ядерных частиц (в случае В11 пять нейтронов с пятью протонами) образует своего рода оболочку; когда к этой оболочке добавляется еще одна частица, то вместо того, чтобы поглотиться, она начинает обращаться вокруг оболочки. Если это так, то для добавочного протона нужно взять другое значение электростатической энергии. Нужно считать, что избыток энер­гии С11 над В11 как раз равен


т. е. равен энергии, необходимой для того, чтобы снаружи обо­лочки появился еще один протон. Это число составляет 5/6 ве­личины, предсказываемой уравнением (8.23), так что новое значение радиуса будет равно 5/6 от (8.24). Оно намного лучше согласуется с прямыми измерениями.

Согласие в цифрах приводит к двум выводам. Первый: зако­ны электричества, видимо, действуют и на столь малых расстоя­ниях, как 10-13 см. Второй: мы убедились в замечательном сов­падении — неэлектрическая часть сил взаимодействия протона с протоном, нейтрона с нейтроном и протона с нейтроном одинакова.

– Конец работы –

Эта тема принадлежит разделу:

Фейнмановские лекции по физике

Этим выпуском мы начинаем печатание перевода второго тома лекций, прочитанных Р. Фейнманом студентам второго курса. «Фейнмановские лекции по физике», вы будете понемногу приобщаться к живой, развивающейся науке.....

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электростатическая энергия ядра

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Электрические силы
Рассмотрим силу, которая, подобно тяготе­нию, меняется обратно квадрату расстояния, но только в миллион биллионов биллионов биллионов раз более сильную. И которая от­личается еще в одном. Пу

Электрические и магнитные поля
Первым делом нужно несколько расширить наши представ­ления об электрическом и магнитном векторах Е и В. Мы опре­делили их через силы, действующие на заряд. Теперь мы наме­реваемся говорить об элект

Характеристики векторных полей
Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зад

Законы электромагнетизма
Первый закон электромагнетизма описывает поток электри­ческого поля:  

Что это такое — «поля»?
Сделаем теперь несколько замечаний о принятом нами спо­собе рассмотрения этого вопроса. Вы можете сказать: «Все эти потоки и циркуляции чересчур абстрактны. Пусть в каждой точке пространства есть э

Электромагнетизм в науке и технике
В заключение мне хочется закончить эту главу следующим рассказом. Среди многих явлений, изучавшихся древними грека­ми, были два очень странных. Первое: натертый кусочек янта­ря мог поднять маленьки

Понимание физики
Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явле­ние может оказаться слишко

Скалярные и векторные поля — Т и h
Мы начинаем сейчас рассмотрение абстрактного, математи­ческого подхода к теории электричества и магнетизма. Наша цель — объяснить смысл законов, написанных в гл. 1. Но для этого надо сперва объясни

Производные полей — градиент
Когда поля меняются со временем, то их изменение можно описать, задав их производные по t. Мы хотим также описать и их изменение в пространстве, потому что мы интересуемся связью, скажем, ме

Выбрав удобную систему координат, мы можем написать
Т1 = Т(х, у, z) и Т2=Т(х + Dх, у + Dу, z + Dz), где Dx:, Dy, Dz — компоненты вектора DR (фиг. 2.5). Вспомнив (2.7), напишем

Дифференциальное уравнение потока тепла
Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется со­вершенно четко. Известно, что есл

Если площадь этой плиты DА, то поток тепла за единицу времени равен
  (2.42) Коэффициент пропорциональности c (каппа) называется тепло­проводностью.

Вторые производные векторных полей
Пока мы имели дело только с первыми производными. А почему не со вторыми? Из вторых производных можно соста­вить несколько комбинаций:

Криволинейный интеграл от Ñψ
В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено до­вольно много, все их можно подытожи

Поток векторного поля
Прежде чем рассматривать следующую интегральную теоре­му — теорему о дивергенции,— хотелось бы разобраться в од­ной идее, смысл которой в случае теплового потока легко усваи­вается. Мы уже определи

Поток из куба; теорема Гаусса
Рассмотрим теперь частный случай потока из маленького ку­бика и получим интересную формулу. Ребра куба пусть нап­равлены вдоль осей координат (фиг. 3.5), координаты вершины, ближайшей к началу, сут

Теплопроводность; уравнение диффузии
Чтобы привыкнуть к теореме, разберем на примере, как ее применяют. Обратимся опять к распространению тепла, скажем в металле, рассмотрим совсем простой случай: все тепло было подведено к телу заран

Циркуляция векторного поля
Мы хотим теперь рассмотреть ротор поля примерно так же, как рассматривали дивергенцию. Мы вывели теорему Гаусса, вычисляя интеграл по поверхности, хотя с самого начала отнюдь не было ясно, что мы б

Циркуляция по квадрату; теорема Стокса
Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он распо­ложен в одной из координатных

Поля без роторов и поля без дивергенций
Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по лю

Статика
Начнем теперь подробное изучение теории электромагнетизма. Она вся (весь электромаг­нетизм целиком) запрятана в уравнениях Мак­свелла:

Магнитостатика
    Обратите внима

Закон Кулона
    (4.9)

Электрический потенциал
Для начала усвоим понятие электрического потенциала, связа

Электростатический потенциал
  (4.22) Часто очень удобно брать

Поток поля Е
Теперь мы хотим вывести уравнение, которое непосредст­венно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обра

Закон Гаусса; дивергенция поля Е
Наш изящный результат — уравнение (4.32) — был дока­зан для отдельного точечного заряда. А теперь допустим, что имеются два заряда: заряд ql—в одной точке и заряд (q2 —

Поле заряженного шара
Одной из самых трудных задач, которую пришлось нам ре­шать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как

Линии поля; эквипотенциальные поверхности
Теперь мы собираемся дать геометрическое описание электро­статического поля. Два закона электростатики: один — о пропор­циональности потока и внутреннего заряда и другой — о том, что электрическое

Электростатика—это есть закон Гаусса плюс...
Существуют два закона электростатики: поток электрического поля из объема пропор­ционален заряду внутри него — закон Гаусса, и циркуляция электрического поля равна нулю — Е есть градиент. Из этих д

Равновесие в электростатическом поле
Рассмотрим сначала следующий вопрос: в каких условиях точе

Равновесие с проводниками
В системе закрепленных зарядов устойчивого места для пробного заряда нет. А как обстоит дело с системой заряженных проводников? Может ли система заряженных проводников соз­дать поле, в котором для

Устойчивость атомов
Раз заряды не могут иметь устойчивого положения, то, разу­меется, неправильно представлять вещество построенным из ста­тических точечных зарядов (электронов и протонов), управляе­мых только

Поле заряженной прямой линии
Закон Гаусса может быть применен для решения множества задач, связанных с электрическим полем, обладающим специаль­ной симметрией (чаще всего сферической, цилиндрической или плоской). В оставшейся

Заряженная плоскость; пара плоскостей
В качестве другого примера рассчитаем поле однородно заряженного плоского листа. Предположим, что лист имеет бесконечную протяженность и заряд на единицу площади равен а. Сразу приходит в голову сл

Однородно заряженный шар; заряженная сфера
В гл. 4 мы уже применяли закон Гаусса, когда должны были найти поле вне однородно заряженной шаровой области. Тот же метод может дать нам и поле в точках внутри шара. Этот рас­чет, например,

Точен ли закон Кулона?
Если мы вглядимся чуть пристальнее в то, как поле в

Поля проводника
Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В ме­талле бывает та

Поле внутри полости проводника
Вернемся теперь к проблеме пустотелого резервуара — про­водника, имеющего внутри полость. В металле поля нет, а вот есть ли оно в полости? Покажем, что если полость пуста, то п

Уравнения электростатического потенциала
В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятель­ствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математи­ческими методами, испол

Электрический диполь
Сначала возьмем два точечных заряда +q и -q,

Замечания о векторных уравнениях
Здесь, пожалуй, уместно сделать общее замечание, касаю­щееся векторного анализа. Хотя его теоремы и доказаны в общем виде, однако, приступая к расчетам и анализу какой-либо за­дачи, следует с толко

Диполъный потенциал как градиент
Мы хотели бы теперь отметить любопытное свойство формулы д

Дипольное приближение для произвольного распределения
Столь же интересно и не менее важно поле диполя, возни­кающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас и

Поля заряженных проводников
Мы покончим на этом с примерами таких физических задач, в которых распределение зарядов известно с самого начала. Такие задачи решаются без особых затруднений, в худшем слу­чае требуя нескольких ин

Метод изображений
Мы определили поле двух точечных зарядов. На фиг. 6.8 показаны некоторые линии поля и эквипотенциальные поверх­ности, полученные из расчетов, приведенных в гл. 5. Рассмот­рим теперь эквипотенциальн

Точечный заряд у проводящей плоскости
В качестве простейшего применения этого метода используем плоскую эквипотенциальную поверхность В (см. фиг. 6.8). Она поможет нам решить задачу о заряде вблизи проводящей плоскости. Для этог

Точечный заряд у проводящей сферы
А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом q вблизи нее (фиг. 6.11

Конденсаторы; параллельные пластины
Теперь обратимся к другому роду задач, связанных с про­водниками. Рассмотрим две широкие металлические пластины, параллельные между собой и разделенные узким (по сравнению с их размерами) промежутк

Пробой при высоком напряжении
Сейчас мы качественным образом рассмотрим некоторые ха­рактеристики полей вокруг проводников. Зарядим электри­чеством проводник, но на сей раз не сферический, а такой, у ко­торого есть острие или р

Ионный микроскоп
Сверхвысокое электрическое поле, окружающее всякий острый выступ заряженного проводника, получило интересное применение в одном приборе. Работа ионного микроскопа обус­ловлена мощными полями

Методы определения электростатического поля
В этой главе мы продолжим рассмотрение характеристик электрических полей в различ­ных условиях. Сперва мы опишем один из наи­более разработанных методов расчета полей в присутствии проводников. Мы

Двумерные поля; функции комплексного переменного
Комплексная величина з определяется так:  

Колебания плазмы
Займемся теперь такими физическими задачами, в которых поле создается не закрепленными зарядами и не зарядами на проводящих поверхностях, а сочетанием обоих факторов. Ины­ми словами, полем управляю

Коллоидные частицы в электролите
Обратимся к другому явлению, когда местоположение заря­дов определяется потенциалом, создаваемым в какой-то степени самими зарядами. Такой эффект существен для поведения коллоидов. Коллоид — это вз

Электростатическое поле сетки
Напоследок мы хотим изложить еще одно интересное свой­ство электрических полей. Оно используется в электрических приборах, электронных лампах и для других целей. Речь идет о поведении электрическог

Электростатическая энергия зарядов. Однородный шар
Одно из самых интересных и полезных от­крытий в механике —это закон сохранения энер­гии. Зная формулы для кинетической и потен­циальной энергий механической системы, мы способны обнаруживать связь

Энергия конденсатора. Силы, действующие на заряженные проводники
Рассмотрим теперь энергию, требуемую на то, чтоб зарядить конденсатор. Если заряд Q был снят с одной обкладки конден­сатора и перенесен на другую, то между обкладками возникает разность поте

Электростатическая энергия ионного кристалла
Рассмотрим теперь применение понятия электростатической энергии в атомной физике. Мы не можем запросто измерять силы, действующие между атомами, но часто нас интересует разница в энергиях двух расс

Энергия в электростатическом поле
Рассмотрим теперь другие способы подсчета электростатичес­кой энергии. Все они могут быть получены из основного соот­ношения (8.3) суммированием (по всем парам) взаимных энергий каждой пары зарядов

Энергия точечного заряда
Новое соотношение (8.35) говорит нам, что даже у отдель­ного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением

Градиент электрического потенциала в атмосфере
В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное элект­рическое поле Е

Электрические токи в атмосфере
Помимо градиента потенциала, можно измерять и другую величину — ток в атмосфере. Плотность его мала: через каждый квадратный метр, параллельный земной поверхности, проходит около 10-6

Происхождение токов в атмосфере
Теперь нужно ответить на вопрос об источнике больших отрицательных токов, которые должны течь от «верха» к земной поверхности, чтобы поддержать ее отрицательный заряд. Где же те батареи, которые эт

Механизм распределения зарядов
Теперь мы хотим обратиться к обсуждению самой важной для нас стороны дела — к возникновению электрических заря­дов. Разного рода эксперименты, включая полеты сквозь грозо­вой фронт (пилоты, соверша

Диэлектрическая проницаемость
Сейчас мы разберем еще одно характерное свойство материи, возникающее под влиянием электрического поля. В одной из предыдущих глав мы рассмотрели поведение проводников, в которых заряды под

Вектор поляризации Р
Продолжив наш анализ, мы обнаружим, что идея о проводя­щих и непроводящих участках не так уж существенна. Любой из маленьких шариков действует как диполь, момент которого создается внешним полем. Д

Поляризационные заряды
Посмотрим теперь, что дает эта модель для конденсатора с диэлектриком. Рассмотрим сначала лист материала, в котором на единицу объема приходится дипольный момент Р. Полу­чится ли в результате в сре

Уравнения электростатики для диэлектриков
Давайте теперь свяжем полученные нами результаты с тем, что мы уже узнали в электростатике. Основное уравнение имеет вид

Поля и силы в присутствии диэлектриков
Мы докажем сейчас ряд довольно общих теорем электроста­тики для тех случаев, когда имеются диэлектрики. Мы уже видели, что емкость плоского конденсатора при заполнении его диэлектриком увеличиваетс

Молекулярные диполи
В этой главе мы поговорим о том, почему вещество бывает д

Электронная поляризация
Займемся сначала поляризацией неполярных молекул. Начнем с простейшего случая одноатомного газа (например, гелия). Когда атом такого газа находится в электрическом поле, электроны его тянутся в одн

Полярные молекулы; ориентационная поляризация
Теперь рассмотрим молекулу, обладающую постоянным дипольным моментом р0 , например молекулу воды. В отсутст­вие электрического поля отдельные диполи смотрят в разных направлениях,

Электрические поля в пустотах диэлектрика
Теперь мы переходим к интересному, но сложному вопросу о диэлектрической проницаемости плотных веществ. Возьмем, например, жидкий гелий, или жидкий аргон, или еще какое-нибудь неполярное вещество.

Следова­тельно, если поле внутри однородного диэлектрика мы назовем Е, то можно записать
E=Eдырка+Eшарнк, (11.23) где Eдырка — поле в дырке, а Eшарик — по­ле в однородно поля­ризованном шарике (фиг. 11.6). Поле одно­родно

Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
В жидкости мы ожидаем, что поле, поляризующее отдель­ный атом, скорее похоже на Едырка, чем просто на Е. Если взять Eдырка из (11.25) в качестве поляризующего поля, вхо­дящего

Твердые диэлектрики
Обратимся теперь к твердым телам. Первый интересный факт относительно твердых тел заключается в том, что у них бывает постоянная поляризация, которая существует даже и без приложения внешнего элект

Сегиетоэлектричество; титанат бария
Мы опишем здесь особый класс кристаллов, которые, можно сказать, почти случайно обладают «встроенным» постоянным электрическим моментом. Ситуация здесь настолько критична, что, если слегка увеличит

Одинаковые уравнения — одинаковые решения
Вся информация о физическом мире, при­обретенная со времени зарождения научного прогресса, поистине огромна, и кажется почти невероятным, чтобы кто-то овладел заметной частью ее. Но фактически физи

Поток тепла; точечный источник вблизи бесконечной плоской границы
Ранее мы уже обсуждали (гл. 3, § 4) поток тепла. Вообразите кусок какого-то материала, необязательно однородного (в раз­ных местах может быть разное вещество), в котором темпера­тура меняется от то

Натянутая мембрана
Рассмотрим теперь совсем другую область физики, в которой тем не менее мы придем снова к точно таким же уравнениям. Возьмем тонкую резиновую пленку — мембрану, натянутую на большую горизонтальную р

Диффузия нейтронов; сферически-симметричный источник в однородной среде
Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой

Безвихревое течение жидкости; обтекание шара
Рассмотрим теперь пример, по существу, не такой уж хоро­ший, потому что уравнения, которые мы будем использовать, на самом деле не описывают новый объект полностью, а отве­чают лишь некоторым идеал

Освещение; равномерное освещение плоскости
В этом параграфе мы обратимся к совсем другой физической проблеме — мы ведь хотим показать большое разнообразие воз­можностей. На этот раз мы проделаем кое-что, что приведет нас к интегралу

Фундаментальное единство» природы
В этой главе мы хотели показать, что, изучая электростати­ку, вы одновременно учитесь ориентироваться во многих во­просах физики и что, помня об этом, можно выучить почти всю физику за несколько ле

Магнитное поле
Сила, действующая на электрический заряд, зависит не только от того, где он находится, но и от того, с какой скоростью он движется. Каждая точка в пространстве характеризуется двумя векторными вели

Электрический ток; сохранение заряда
Подумаем теперь о том, почему магнитные силы дей­ствуют на провода, по которым течет электрический ток. Для этого определим, что понимается под плотностью тока. Элект­рический ток состоит из движущ

Магнитная сила, действующая на ток
Теперь мы достаточно подготовлены, чтобы определить силу, действующую на находящуюся в магнитном поле проволоку, по которой идет ток. Ток состоит из заряженных частиц, дви­жущихся по проволоке со с

Магнитное поле постоянного тока; закон Ампера
Мы видели, что на проволоку в магнитном поле, создавае­мом, скажем, магнитом, действует сила. Из закона о том, что действие равно противодействию, можно ожидать, что, когда по проволоке протекает т

Магнитное поле прямого провода и соленоида; атомные токи
Можно показать, как пользоваться законом Ампера, опреде­л

Относительность магнитныхи электрических полей
Когда мы сказали, что магнитная сила на заряд пропорциональна его скорости, вы, наверное, подумали: «Какой скорости? По отношению к какой системе отсчета?» Из определения В, данного в начале этой г

Преобразование токов и зарядов
Вы, вероятно, были обеспокоены сделанным нами упроще­нием, когда мы взяли одну и ту же скорость v для частицы и электронов проводимости в проволоке. Можно было бы вер­нуться назад и снова проделать

Суперпозиция; правило правой руки
Мы закончим эту главу еще двумя замечаниями по вопро­сам

Векторный потенциал
В этой главе мы продолжим разговор о магнитостатике, т, е. о постоянных магнитных полях и постоянных токах. Магнитное поле и электрические токи связаны нашими основными уравнениями:

Векторный потенциал заданных токов
Раз В определяется токами, значит, и А тоже. Мы хотим теп

Это векторное уравнение, конечно, распадается на три урав­нения
   

Прямой провод
В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, поль­зуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод рад

Длинный соленоид
Еще пример. Рассмотрим опять бесконечно длинный соле­ноид с током по окружности, равным пI на единицу длины. (Мы считаем, что имеется n витков проволоки на единицу дли­ны, несущих каж

Поле маленькой петли; магнитный диполь
Воспользуемся методом векторного потенциала, чтобы найти магнитное поле маленькой петли с током. Как обычно, под словом «маленькая» мы просто подразумеваем, что нас интере­суют поля только на больш

Векторный потенциал цепи
Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упро­стить уравнения для магнитн

Закон Био— Савара
В ходе изучения электростатики мы нашли, что электриче­ск

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги