рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Критика бесструктурности объектов микромира

Критика бесструктурности объектов микромира - раздел Физика, Критика методологии современной теоретической физики   Современная Физическая Теория Оперирует Бесструктурными И Даж...

 

Современная физическая теория оперирует бесструктурными и даже безразмерными объектами. Правда, для некоторых «элементарных частиц» вещества определены отдельные размеры. Например, протон и нейтрон имеют диаметры порядка 3·10–15 м. Для фотона определена длина волны, других размерных параметров у фотона нет. Размер электрона не удается сформулировать непротиворечиво, хотя величину в 10–15 м и называют классическим радиусом электрона. Про размеры всех остальных частиц ничего определенного сказать нельзя, а в теории они считаются безразмерными.

Никаких сведений о структуре микрочастиц и о материале, из которого эти частицы состоят, теоретическая физика не дает, ограничиваясь общим замечанием, что элементарные частицы – это сингулярные точки соответствующих полей, но структура этих самых полей тоже никак не раскрывается. Правда, благодаря гипотезе де Бройля о том, что каждая частица должна обладать волновыми свойствами, сделан вывод о том, что частицы – это не просто частицы, а они же и волны, длина которых определяется известным соотношением λ = h/p, но какова природа этих волн, как далеко они распространяются в поперечном направлении, что вообще заставляет эти волны образовываться – ничего не известно, а сама постановка подобных вопросов считается нетактичной.

Элементарные частицы вещества обладают широким набором свойств – массой, зарядом (электрическим, а также барионным или лептонным), спином, магнитным моментом и др. Но ничего о природе этих физических величин неизвестно. Они как бы изначально присущи микрообъектам, безо всяких к тому причин. Обладают, и все.

Электрон, находящийся в атоме, вообще не имеет размеров, он точечный. Двигаясь по свои орбитам в атоме, подчиняясь правилам Бора стационарности орбит, электрон чисто вероятностно попадает в ту или иную область внутриатомного пространства, не имея к тому никаких физических причин. И, следовательно, электронная оболочка простого атома структуры не имеет, правда, почему-то вероятность попадания электрона в конкретную точку внутриатомного пространства одна и та же. Почему – неизвестно.

Постулирование отсутствия размеров у микрочастиц и их бесструктурность в принципе не позволяет даже ставить вопрос о природе и происхождении всех остальных физических параметров, которыми наделены микрообъекты. Одновременно это приводит к ряду парадоксов. Парадокс плотности заключается в том, что частица, имеющая массу покоя, но не имеющая размеров, должна иметь бесконечно большую плотность. Энергетический парадокс заключается в том, что микрообъект, не имеющий размеров, должен иметь бесконечно большую энергию своего поля. Но ко всему этому как-то притерпелись, и разными математическими приемами все эти парадоксы в случае необходимости обходятся.

Физики-теоретики все же чувствуют некоторое неудобство от того, что микрочастицы не имеют никаких структур. Интересно, что предлагает по этому поводу физическая теория.

Во «Введении в единую полевую теорию элементарных частиц» Гейзенберг пишет [5]:

«…принимая форму элементарных частиц, энергия может превратиться в вещество. Поэтому различные элементарные частицы можно рассматривать как разные формы существования фундаментальной субстанции – материи или энергии».

Ни Гейзенберг, ни последующие исследователи не сообщают, что же это за различные формы материи или энергии, а, кроме того, что за форма самой материи и что за форма энергии, из которой образованы микрочастицы.

В своих лекциях, изданных в Кембридже, Гейзенберг пишет, что называть эти частицы «мельчайшими элементами» можно лишь в том смысле, если части, на которые они расщепляются, не являются более мелкими, а обладают теми же размерами. Такое решение проблемы мельчайших элементов материи является удивительным и приводит к другому вопросу, который нужно внимательно исследовать. Раньше атомы и атомные ядра рассматривались как составные системы, которые построены из множества элементарных частиц, в то же время электрон и протон считались неделимыми, а значит, элементарными. По мнению физиков-теоретиков в описываемой ситуации такое различие представляется довольно искусственным. В самом деле, считают они, вряд ли существует какое-нибудь хорошее определение, с помощью которого можно отделить частицу от системы. Так, например, пион можно рассматривать как систему, состоящую из одной или нескольких нуклон-антинуклонных пар, нуклон можно построить из λ-гиперона и К-мезона. Фотон – из мюона и антимюона и т. д. Та парадоксальная ситуация, с которой мы столкнулись, очень хорошо описывается формулой: каждая элементарная частица состоит из всех других элементарных частиц. Если для расщепления системы необходима энергия, малая по сравнению с массой покоя образующих ее частей, то практически еще можно говорить, что эта система является составной. Но такое определение весьма туманно и носит не качественный, а количественный характер. Поэтому разумно вообще не делать никакого различия между элементарными частицами и составными системами.

Подобной точки зрения на сегодняшний день придерживаются фактически все физики-теоретики.

Неудобство приведенной точки зрения для развития науки очевидно: если элементарные частицы вещества далее не делятся, а только преобразуются друг в друга, то тем самым найден предел делимости и, следовательно, познание их внутренней сущности – они бесструктурны, ибо структура подразумевает наличие мелких частей, а здесь их нет. Нет структуры – нет возможности объяснить происхождение всех тех свойств, которыми эти частицы обладают. Собственно, теоретическая физика со всем этим практически согласна.

Однако следует заметить, что в подобных рассуждениях допущена некоторая принципиальная ошибка: в основе всей путаницы лежит отождествление массы частиц с энергией и представление о том, что элементарные частицы вещества – это сгустки энергии. При таком подходе становится совершенно непонятно, как могут вообще образовываться какие-либо частицы, если не путем взаимных превращений. Физики, таким образом, не заметили, как из-за неверного подхода, отождествле-ния массы с энергией у них исчезла сама возможность постановки вопроса о поиске структур микрочастицы.

А ведь из самого заключения о том, что «каждая элементарная частица состоит из всех других элементарных частиц» с очевидностью вытекает, что все так называемые «элементарные» частицы вещества вовсе не элементарны, а состоят из каких-то существенно более мелких частиц аналогично тому, как дома самой разной конструкции могут строиться из одинаковых кирпичей, размер которых существенно меньше размеров блоков, из которых строят дома. И, следовате-льно, задачами физики на самом деле являются нахождение свойств этого нового кирпичика, а также нахождение принципов организации структур всех этих многочисленных «элементарных частиц вещества», которые вовсе не так уж и элементарны.

Отвергая даже возможность перехода к глубинному изуче-нию явлений, Гейзенберг, а за ним и вся современная теоретичес-кая физика отрицают бесконечную сложность материи вглубь, объявляют современную квантовую механику с ее комбинатор-ными методами, заимствованными у Специальной теории относительности, полным описанием изучаемых ею явлений.

Но вся наука говорит против утверждений Гейзенберга, а также Бора, Иордана и практически все современной физической школы. Неоднократно в науке возникали метафизические учения, которые ставили предел познанию. Так, например, совсем недавно полагали, что последней познаваемой частью природы является атом. Но пришло время, когда знания человечества о строении вещества настолько возросли, что атом предстал как сложное образование, составленное из многочисленных частей, находящихся в весьма сложно движении. В 19 в. одно время среди физиков был распространен взгляд, что в физике никаких новых областей явлений уже не может быть открыто, Это говорилось как раз накануне открытия радиоактивности.

Диалектический материализм, опираясь на всю историю развития науки и философии, учит, что материя бесконечна вглубь, что электрон так же неисчерпаем, как и атом.

Таким образом, приписывание «принципиального статистического» характера квантовой механике и приписывание ей полноты, которой она не обладает, есть попытка установления границ познания, а «принцип неопределенности» Гейзенберга есть своеобразный пограничный столб, за которым прекращается всякое движение человеческого познания.

В этом отношении в области квантовой механики мы имеем ярко выраженные ошибочные положения, проистекающие из ло-жных установок эмпириокритической философии. Тень эмпирио-критицизма бежит за развитием квантовой механики с самой ее колыбели. Эта теория, по выражению все того же Гейзенберга, «оперирует только соотношениями между принципиально наблюдаемыми величинами», а поскольку внутренние движения материи сегодня не наблюдаемы, то они принципиально исключены из квантовой механики. Отсюда и результат.

Квантовая механика дала великолепные методы вычислений «принципиально наблюдаемых» величин – уровней энергии электронов, частот спектральных линий атомов и т.п. Однако теория ничего не может сказать о траекториях электрона в пределах атома, это было умышленно исключено с самого начала как нечто «принципиально не наблюдаемое». То, что умышленно исключено из теории, считается «качественно новыми закономер-ностями микромира». Однако приходится лишь с сожалением констатировать, что собственную ограниченность уважаемые ученые выдали за принципиальное устройство природы.

– Конец работы –

Эта тема принадлежит разделу:

Критика методологии современной теоретической физики

На сайте allrefs.net читайте: "Критика методологии современной теоретической физики"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Критика бесструктурности объектов микромира

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Критика целей современной физической теории
  Недостатки современной физической теории не являются чем-то случайным, они вытекают из всей ее методологии и, прежде всего, из тех целей, которые теория ставит перед собой.

Критика феноменологии
  Современная теоретическая физика имеет описательный, а не объяснительный характер [2]. Учебники изобилуют выражениями типа «…общая теория относительности объяснила тяготение…» и «Бо

Критика математизации физики
  В 20-м столетии особое значение в теоретической физике стало придаваться ее математизации, чем она качественно отличается от физики 19-го и предыдущих столетий [3]. Разумее

Критика постулативности
  Для современной физической теории характерно построение ее на базе так называемых постулатов или «принципов», которые являются фактически теми же постулатами [4]. Как было

Критика представлений частных закономерностей как общих
  Для современной теоретической физики характерно распространение частных результатов и частных положений далеко за пределы тех исходных условий, на основании которых они были получен

Критика направленности подбора фактов и трактовок результатов экспериментов
  «Как ни совершенно крыло птицы, оно никогда не смогло бы ее поднять, не опираясь на факты. Факты – это воздух ученого», – так писал И.П.Павлов в своем известном обращении к молодежи

Критика сведения сути процессов к пространственно-временным искажениям
Современная теоретическая физика фактически отказалась от попыток понимания и объяснения процессов и явлений путем вскрытия сути их внутренних механизмов, выяснения особенностей движения материи на

Системы взглядов современной физической теории и диалектического материализма
  Методологию современной физической теории можно представить как ее философию, как систему взглядов. Имеет смысл сформулировать основные положения такой системы и сопоставить их с из

Наука и лженаука
  Что такое наука? Наука это поиск новых объективных фактов, их систематизация и выявление на этой основе объективных законов природы, на базе которых возникают новые направления иссл

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги