рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ТЕОРЕМА ГАУССА

ТЕОРЕМА ГАУССА - Лекция, раздел Физика, ЭЛЕКТРОСТАТИКА Ес...

Если известно расположение зарядов, то электрическое поле зарядов можно найти по принципу суперпозиции. Однако применение этого метода в каждом отдельном случае требует довольно сложных вычислений. Задача может быть решена довольно просто применением некоторых теорем, которые мы здесь рассмотрим.

Вычислим поток вектора через бесконечно малую площадку . Будем считать, что поле создано точечным зарядом в вакууме, находящимся в точке (рис.1.1.7).

Из заряда проведем радиус-вектор к площадке . Тогда поток вектора через эту площадку будет равен: .

Произведение равно проекции площадки на поверхность, перпендикулярную к . Это произведение положительно, если из видна внутренняя сторона площадки (угол острый), и отрицательно, если видна ее внешняя сторона (угол тупой), то есть , где - абсолютная величина перпендикулярной к проекции площадки . Пусть - телесный угол, под которым площадка видна из точки . Тогда

(совпадает с элементом шаровой поверхности радиуса , проведенной из точки , поэтому ). Тогда для потока вектора имеем

Углу будем приписывать положительный знак, если из точки видна внутренняя сторона , и отрицательный, если внешняя. Тогда:

- в поле положительного заряда поток напряженности через произвольно ориентированную площадку зависит от величины заряда, образующего поле и от телесного угла , под которым эта площадка видна из занимаемой зарядом точки .

Тогда поток вектора через конечную поверхность равен

где - положительный или отрицательный телесный угол, под которым видна из точки вся поверхность .

Рассмотрим замкнутую поверхность . В этом случае заряд может находиться либо внутри поверхности , либо вне ее.

Пусть заряд находится внутри замкнутой поверхности . Эта поверхность окружает его со всех сторон и видна из них под углом , тогда

Если же заряд находится в точке , лежащей вне поверхности (рис.1.1.8), то из точки можно провести касательные к , образующие конус, соприкасающийся с по замкнутой кривой , которая разделит на две части и . Обе эти поверхности видны из точки под одним и тем же углом, причем одна поверхность - с внутренней стороны , а другая - с внешней, то есть углы и , соответствующие этим поверхностям будут иметь разные знаки, при этом . Тогда и потоки через эти поверхности будут равны и имеют разные знаки, поэтому

-

- поток вектора через всякую замкнутую поверхность, не охватывающую заряд , равен нулю:

Полученные результаты справедливы для любой систему электрических зарядов. Действительно, пусть поле образовано системой зарядов . Согласно принципу суперпозиции, напряженность результирующего поля Поток результирующего вектора равен

,

где , и

Эта формула выражает собой теорему Гаусса:

В произвольном электростатическом поле в вакууме поток вектора напряженности через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную .

Если сумма , то - линии напряженности выходят из поверхности, если , - линии напряженности входят в поверхность. Из теоремы Гаусса следует:

1. Линии напряженности могут начинаться только в местах положительных зарядов, а заканчиваться только в местах отрицательных зарядов.

2. Если мы возьмем замкнутую поверхность, охватывающую заряды, алгебраическая сумма которых равна нулю, то полный поток вектора напряженности через поверхность равен нулю. Это означает, что число линий, выходящих из объема, ограниченного данной поверхностью, равно числу линий, входящих в объем.

3. Если замкнутая поверхность проведена в поле так, что внутри нее нет зарядов, то линии напряженности будут ее пронизывать, не начинаясь, и не кончаясь внутри нее. Следовательно, число входящих линий равно числу выходящих линий, и полный поток напряженности через поверхность также равен нулю.

Рассмотрим теперь дифференциальную форму теоремы Гаусса. Пусть в некоторой точке с координатами напряженность поля (рис.1.1.9) равна .Построим около точки прямоугольный бесконечно малый параллелепипед объемом . Объемная плотность заряда в нем равна и зависит от координат выбранной точки поля: .

 

Поток вектора через правую грань (1)

равен:

,

а через левую (2):

,

Поэтому поток вдоль оси равен

Таким же образом для верхней и нижней грани получим:

,

для задней и передней:

.

По теореме Гаусса

,

причем - заряд, заключенный внутри объема (ввиду малости можно считать что внутри параллелепипеда всюду одинакова),

,

тогда

,

или

Сумма, стоящая в левой части, называется дивергенцией вектора ,

, или

-дивергенция вектора напряженности равна объемной плотности зарядов, создающих поле, деленной на . Это выражение представляет собой теорему Гаусса в дифференциальной форме. Она характеризует поле в точке. Электрические заряды являются источниками и стоками поля вектора . Линии вектора начинаются и заканчиваются на электрических зарядах. Если - это источник поля , если - сток поля. Если , то в данной точке нет зарядов, линии не прерываются.

 

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРОСТАТИКА

ЭЛЕКТРОСТАТИКА Лекция ЭЛЕКТРОСТАТИКА В ВАКУУМЕ Электрический заряд... Лекция ПРИНЦИП... Лекция ГУСТОТА ЛИНИЙ НАПРЯЖЕННОСТИ ПОТОК ВЕКТОРА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ТЕОРЕМА ГАУССА

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 1
1.ОСНОВЫ ЭЛЕКТРОСТАТИКИ 1.1. ЭЛЕКТРОСТАТИКА В ВАКУУМЕ 1.1.1. Электрический заряд Электрическое, или электростатическое взаимодействие – это один из фундаментальных видов

ЗАКОН КУЛОНА
Основной закон взаимодействия электрических зарядов был найден Шарлем Кулоном в 1785 г. экспериментально. Кулон установил, что сила взаимодействия

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ
Пространство, в котором находится электрический заряд, обладает определенными физическими свойствами. На всякий другой заряд, внесенный в это пространство, действуют электростатические си

ПРИНЦИП СУПЕРПОЗИЦИИ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ
Основная задача электростатики заключается в том, чтобы по заданным распределению в пространстве и величине источников поля – электрических зарядов, найти величину и направление вектора напряженнос

ГУСТОТА ЛИНИЙ НАПРЯЖЕННОСТИ. ПОТОК ВЕКТОРА НАПРЯЖЕННОСТИ
Силовую линию поля (линию напряженности) можно провести через любую точку пространства, так что число проводимых линий ничем не ограничено. Линия напряженности в этом случае дает лишь направление н

ПРИМЕНЕНИЕ ТЕОРЕМЫ ГАУССА К РАСЧЕТУ ПОЛЕЙ
1. Найдем напряженность электрического поля бесконечной нити, заряженной с линейной плотностью заряда (рис.1.1.10). Построи

Лекция 4
1.1.9.ПОТЕНЦИАЛЬНЫЙ ХАРАКТЕР ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ.РАБОТА СИЛ ПОЛЯ ПРИ ПЕРЕМЕЩЕНИИ ЗАРЯДОВ. ЦИРКУЛЯЦИЯ И РОТОР ВЕКТОРА НАПРЯЖЕННОСТИ Работа, совершаемая силами электростатического поля

УРАВНЕНИЕ ПУАССОНА
  Из теоремы Гаусса имеем: . Подставим выражение, связывающее напряженность и потенциал

ПОЛЯРНЫЕ И НЕПОЛЯРНЫЕ МОЛЕКУЛЫ
Если диэлектрик внести в электрическое поле, то и поле, и диэлектрик претерпевают изменения. В составе атомов и молекул имеются положительные и отрицательные заряды (ядра, электроны). Электроны дви

ДИПОЛЬ В ОДНОРОДНОМ И НЕОДНОРОДНОМ ЭЛЕКТРИЧЕСКИХ ПОЛЯХ
Если диполь поместить в однородное электрическое поле, то на заряды диполя и

ПОЛЕ ВНУТРИ ДИЭЛЕКТРИКА. СВОБОДНЫЕ И СВЯЗАННЫЕ ЗАРЯДЫ
Заряды, входящие в состав молекул диэлектрика, называются связанными. Под действием поля связанные заряды могут лишь немного смещаться из своих положений равновесия. Покинуть пределы молекул

ЛЕКЦИЯ 5
1.2.5. ВЕКТОР ЭЛЕКТРИЧЕСКОГО СМЕЩЕНИЯ Источниками электрического поля служат не только сторонние, но и связанные заряды, т.е.

УСЛОВИЯ НА ГРАНИЦЕ ДВУХ ДИЭЛЕКТРИКОВ
Можно показать, что линии смещения при переходе через границу диэлектриков не претерпевают разрыва. Поместим в однородное

РАСПРЕДЕЛЕНИЕ ЗАРЯДОВ НА ПРОВОДНИКЕ
В проводниках электрические заряды могут свободно перемещаться под действием поля. Силы, действующие на свободные электроны металлического проводника, помещенного во внешнее электростатическое поле

Лекция 8
1.4.ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ 1.4.1.ЭНЕРГИЯ ЗАРЯЖЕННОГО ПРОВОДНИКА Будем считать среду, в которой находятся электрические заряды и заряженные тела, однородной и изотропной, не о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги