рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Краткие теоретические сведения

Краткие теоретические сведения - раздел Физика, ФИЗИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ Под Прокаливаемостью Понимают Способность Стали Закаливать­ся На Определенную...

Под прокаливаемостью понимают способность стали закаливать­ся на определенную глубину. Прокаливаемостъ является одним из главных факторов, определяющих свойства стали. Сталь, использу­емая для ответственных деталей и конструкций, должна иметь высо­кую прокаливаемостъ.

Для получения структуры мартенсита при закалке необходимо, чтобы реальная скорость охлаждения стали была выше некоторой критической скорости Vкр. Под критической скоростью понимают та­кую минимальную скорость закалки, при которой аустенит превраща­ется в мартенсит, а не распадается на феррито-цементитную смесь. Для различных материалов критические скорости закалки различны.

При закалке детали реальная скорость охлаждения уменьшается по мере удаления от поверхности. Наибольшей она получается на поверхности, наименьшей — в центре сечения.

Если скорость охлаждения в центре сечения окажется больше критической для данной стали, то деталь закалится по всему сече­нию, т.е. прокалится насквозь (рис. 14.1 а). Если же скорость ох­лаждения в центре получится меньше критической, то сердцевина де­тали окажется непрокалившейся (рис. 14.1 6).

 

Рисунок 14.1 – Схема прокаливаемости цилиндрического образца: а) сквозная прокаливаемость, 6) несквозная прокаливаемостъ. 1- кривая распределения реальных скоростей охлаждения по диаметру цилиндра; 2- критическая скорость охлаждения; 3- слой, закаленный на мартенсит

 

Прокаливаемость стали тем выше, чем больше реальная ско­рость охлаждения и ниже Vкр. Основные факторы, увеличивающие реальную скорость охлаждения: чисто­та поверхности детали (отсутствие окалины и обезуглероженного слоя), а также среда, обеспечивающая достаточную интенсивность охлажде­ния и т. д.

Факторы, снижающие Vкр и повышающие прокаливаемость:

1. Все легирующие элементы, растворенные в аустените за исключением кобальта, уменьшают критическую скорость охлаждения и повышают прокаливаемость стали.

Наиболее эффективно использование комплексного легирования, когда положительное влияние отдельных элементов на прокаливаемость увеличивается.

Нужно отметить, что прокаливаемость углеродистых и низколегированных сталей существенно возрастает при введении в них бора в количестве тысячных долей процента.

С повышением содержания углерода аустенит становится более устойчивым к распаду, т.е. критическая скорость охлаждения уменьшается. Наименьшей критической скоростью и наилучшей прокаливаемостъю обладают стали, близкие по составу к эвтектоидной. Зазвтектоидные стали имеют более высокую критическую скорость охлаждения, так как перед закалкой их структура состоит из аустенита и вторичного цементита, который снижает устойчивость аустенита (облегчает образование феррито-цементитной смеси).

Чем однороднее аустенит, тем более он устойчив против распада на феррито-цементитную смесь, т.е. тем ниже Vкр и больше прокаливаемость.

С увеличением величины зерна аустенита уменьшается суммарная межзеренная поверхность, на которой начинается эвтектоидный распад, и прокаливаемость увеличивается.

 

Легирование стали является самым сильным фактором, влияющим на прокаливаемость. Во-первых, повышение степени легированности обеспечивает сквозную прокаливаемость в больших сечениях. Во-вторых, использование легированных сталей вместо углеродис­тых позволяет проводить их закалку в масле и даже на воздухе, что снижает закалочные напряжения.

В зависимости от степени легированности конструкционные стали можно разделить на три группы:

1. Стали пониженной прокаливаемости.

Сквозная прокаливаемостъ достигается закалкой в воде при диаметре цилиндрических образцов 10-15 мм. К этой группе отно­сятся углеродистые и низколегированные стали с содержанием ле­гирующих элементов 3-4 %.

2. Стали средней прокаливаемостк.

Сквозная прокаливаемость достигается закалкой в масле при диаметре цилиндрических образцов 100-150 мм. К этой группе от­носятся легированные стали с содержанием легирующих элементов 6-12 %.

3. Стали высокой прокаливаемости.

Сквозная прокаливаемость достигается закалкой в масле цилиндрических образцов, имеющих диаметр > 200 мм. Это высоколе­гированные стали с содержанием легирующих элементов 12-30 %.

Диаметр цилиндрического образца, который в данном охладите­ле прокаливается насквозь, называется критическим диаметром. Критический диаметр служит характеристикой прокаливаемости ста­ли.

Другой простейшей характеристикой прокаливаемости стали в определенном охладителе служит глубина прокаливаемости. За глу­бину прокаливаемости конструкционных сталей условно принимают расстояние от поверхности детали до слоя с полумартенситной структурой (50 % троостита и 50 % мартенсита).

Глубину прокаливаемости легко определить, измеряя твердость от поверхности вглубь изделия, и имея справочные данные о твер­дости сталей разного состава с полумартенситной структурой (HRC пм в табл. 14.1).

 

Таблица 14.1 – Твердость полумартеноитной структуры (50% мартенсита и 50% троостита) в углеродистых и легированных сталях

 

Содержание углерода, % Твердость, HRC пм Содержание углерода, % Твердость, HRC пм
Углеро-дистые Легирован- ные Углеро-дистые Легирован- Ные
0,08-0,17 0,18-0,22 0,23-0,27 0,28-0,32 - 0,33-0,42 0,43-0,52 0,53-0,62

 

Для определения прокаливаемости углеродистых сталей приме­няют стандартный метод торцевой закалки. Метод заключается в том, что специальный цилиндрический образец нагревают до темпе­ратуры закалки, выдерживают при этой температуре 30-50 мин, а затем в специальной установке закаливают с торца струей воды (рис. 14.2).

 

  Рисунок 14.2 – Установка для торцевой закалки образцов: 1- образец; 2- штатив; 3- сопло; 4- сливная коробка

 

Установка должна быть помещена недалеко от печи, чтобы можно бы­ло быстро перенести об­разец из печи в установ­ку. Перед испытанием по холодному образцу регу­лируют точность попада­ния струи воды в торец.

Образец выдерживают над струей воды до пол­ного охлаждения (не ме­нее 10 мин). После охлаждения образца по его двум диаметрально противоположным образующим сошлифовывают две лыски на глубину 0,5 мм. По длине этих лысок измеряют твердость на приборе Роквелла по шкале НRС через 1,5-3 мм.

Заканчивают испытание, когда твердость на определенном расстоянии от торца не меняется. Аналогичные замеры твердости производят на второй плоскости. Значения твердости заносят в протокол. Вычислив среднее арифметическое твердости каждой пары точек, находящихся на одинаковом расстоянии от торца, строят кривую прокаливаемости в координатах «Твердость (HRC) - расстоя­ние от торца (L, мм)».

Затем по таблице 14.1. определяют твердость полумартенситной структуры данной стали. На графике параллельно оси абсцисс про­водят прямую, соответствующую твердости полумартенситной струк­туры, до пересечения с кривой и опускают перпендикуляр на ось абсцисс. Полученное значение L соответствует глубине прокаливаемости данной стали.

Чем больше это расстояние, тем выше прокаливаемость.

 

– Конец работы –

Эта тема принадлежит разделу:

ФИЗИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ

РОССИЙСКОЙ ФЕДЕРАЦИИ... Федеральное агентство по образованию... Государственное образовательное учреждение высшего профессионального образования Оренбургский государственный...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Краткие теоретические сведения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткие теоретические сведения
Атомно-кристаллическая структура металлов.Металлы при нормальных условиях имеют кристаллическую структуру, отличительной особенностью которой является определенное взаимное

Краткие теоретические сведения
При макроанализе проводят исследование макрострук­туры, т. е. строения металла, видимое невооруженным глазом или при небольшом увеличении (до 10...30 раз) с помощью лупы. Макроанализ приме

Краткие теоретические сведения
Под микроанализом понимают изучение строения металлов и сплавов с помощью металлографического микроскопа при увеличении в 50-2000 раз. Внутреннее строение, изучаемое при помощи мик­роскопа, называю

Краткие теоретические сведения
Фрактография это наука, изучающая строение из­ломов. Изломом называется поверхность, образующаяся в результате разрушения твердых тел. Изучение строения изломов невооруженным глазом или при небольш

Краткие теоретические сведения
Измерение твердости самый доступный и распространенный ме­тод статических испытаний материалов, который широко использует­ся как в исследовательских целях, так и как средство контроля ка­чества мет

Краткие теоретические сведения
Диаграмма состояния представляет собой графическое изображе­ние фазового состава сплава в равновесном состоянии в зависимос­ти от температуры и концентрации. Под сплавом понимают вещество, полученн

Краткие теоретические сведения
Термический метод основан на выделении или поглощении тепло­ты при внутренних превращениях, происходящих в металлах и спла­вах. При помощи термического метода можно определить температуры фазовых п

Краткие теоретические сведения
Микроструктура технического железа и углеродистых сталей в равновесном состоянии характеризуется нижней левой частью диаг­раммы состояния Ре-С (рис. 8.1). Сплавы с содержанием до 0,02 %С называются

Краткие теоретические сведения
Чугуны это железоуглеродистые сплавы, содержащие свыше 2,14 %С. Кроме железа и углерода в чугунах присутствуют другие элементы - примеси (Мn, Si, Р, S). Железо и углерод образуют в чугу­нах следующ

Краткие сведения из теории
В процессе механического испытания образец может подвергать­ся упругой и пластической деформации е последующим разрушением. Упругой называют деформацию, влияние которой на форму, структуру

Порядок выполнения работы
1. На гидравлическом прессе осадить на разную высоту цилин­дрические образцы из стали, меди или алюминия. Степень холодной пластической деформации подсчитать по формуле   h

Краткие теоретические сведения
К электрическим свойствам, наиболее широко используемым для исследования материалов, в первую очередь, относятся удельная электропроводность (g) и обратная ей величина – удельное электросопротивлен

Краткие теоретические сведения
Термической обработкой называется нагрев стали до опреде­ленной температуры, выдержка ее при данной температуре и после­дующее охлаждение с заданной скоростью. Целью термической обработки

Краткие теоретические сведения
Для повышения твердости и прочности углеродистой стали ис­пользуют закалку в воде. Температуру под закалку выбирают исходя из диаграммы состояния Fе-С (см. предыдущую работу). Продолжитель­ность на

Краткие теоретические сведения
По содержанию углерода инструментальные стали могут быть классифицированы: доэвтектоидные стали, эвтектоидные стали, заэвтектоидные, ледебуритные. Ледебуритные стали имеют в структуре первичные кар

Краткие теоретические сведения
Цементация является одним из основных видов химико-терми­ческой обработки стали. Цементация - насыщение поверхностного слоя стали углеродом. Проводится для получения высокой твердости и из

Краткие теоретические сведения
Алюминиевые сплавы нашли широкое применение в качестве кон­струкционного материала во многих областях техники благодаря ма­лому удельному весу, высокой коррозионной стойкости, высокой удельной проч

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги