рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

О физической сущности волновой функции

О физической сущности волновой функции - раздел Механика, Чем отличается квантовая механика от классической?   В 1926 Г. Австрийский Физик Шредингер Вывел Свое Знаменитое У...

 

В 1926 г. австрийский физик Шредингер вывел свое знаменитое уравнение, описывающее изменения во времени квантовых объектов.

Запишем волновое уравнение де Бройля:

d2ψ p2

—— + —— ψ = 0,

dx2 ħ2

 

где ψ – волновая функция; ħ = h/2π, а р импульс, причем

 

p = mv; p2 = m2v2 = 2m[Eu(r)].

 

Здесь m – масса частицы, колеблющейся в силовом поле, Е – полная энергия частицы, а u(r) – ее потенциальная энергия в этом поле, зависящая от ее положения и значения координат r. Тогда, подставив импульс частицы в уравнение де Бройля, получим волновое уравнение Шредингера:

 

2m

Δ ψ – —— [Eu(r)] ψ = 0.

ħ2

 

Оператор Лапласа Δ учитывает три пространственных координаты:

 

d 2 d 2 d 2

Δ = ———+ ——— + ———.

dx22 dz2

 

Волновому уравнению Шредингера в принципе удовлетворяет любая функция, имеющая природу волны, распространяющейся в пространстве какой-либо физической величины, т. е.

 

r

ψ = ψ [ω (t—— ]

c

при частоте колебаний

 

ω = Е - u(r) / ħ,

 

при этом сущность ψ-функции как физической величины может быт самой разнообразной. Эта сущность не может быть непосредственно установлена фактом удовлетворения уравнению Шредингера точно так же, как и сущность любой физической величины не может быть однозначно установлена на основе удовлетворения ее какому бы то ни было физическому уравнению. Это обусловлено тем, что одинаковыми уравнениями описываются самые разнообразные процессы.

В связи тем, что в квантовой механике не рассматривается структура электрона и природа всех его параметров, то соответственно не может рассматриваться и действительно не рассматривается механизм, обеспечивший появление электрона в той или иной точке пространства в тот или иной момент времени. Но поскольку поведение электрона во внутриатомном пространстве требует описания, остается лишь один путь – подобрать некоторый абстрактный математический аппарат, которым было бы удобно пользоваться при решении конкретных задач. Такой математический аппарат и был подобран: это математический аппарат теории вероятностей.

Как известно, в настоящее время принята трактовка квадрата ψ-функции как плотности вероятности нахождения электрона в данной точке пространства внутри атома. Такая трактовка в принципе игнорирует физику процесса и никак не объясняет, почему же, по каким причинам электрон, имеющий точечные размеры, в каждой точке внутриатомного пространства появляется именно с такой вероятностью.

Трактовка волновой функции как плотности вероятности принципиально снимает вопрос о сути внутреннего устройств тома и создает впечатление о том, что никакого внутреннего механизма, регулирующего положение электрона в атоме, нет вообще. При этом даже такие основополагающие моменты, как стационарность орбит электронов. Никакого объяснения не получают. Не считать же за объяснение стационарности предложенную Бором замкнутость орбит или целое число волн, укладывающихся на орбите! А почему, например, орбита не стационарна, если на ней укладывается не целое число волн? Почему такая система неустойчива? Чем физически отличается целое число волн от не целого, почему при не целом числе волн орбита становится неустойчивой? На все это ответа нет.

Необходимо заметить, что полезность уравнения Шре-дингера вовсе не ставится под сомнение. Это уравнение позволило предсказать большое число явлений атомной физики, вычислить наблюдаемые характеристики атомных систем, в том числе уровни энергии атомов, изменение спектров атомов под влиянием электрических и магнитных полей и т. п. Все это говорит о том, что уравнение Шредингера реально отражает природные внутриатомные процессы и находится в согласии с физической реальностью. Но философская трактовка его решений крайне неудачна. Если волновая функция – это только «плотность вероятности», то ни о каком внутреннем механизме, регулирующим положение электрона в атоме, не может быть и речи, такого механизма просто нет, и ни в чем разбираться не надо, потому что это все равно бесполезно. Такая трактовка абсолютизирует наше незнание микромира и накладывает ограничения на познавательные возможности человека. Поэтому, если принимать во внимание релятивизм, относительность наших знаний, следует поискать другой путь, такой, который позволил бы развиваться нашим представлениям о структуре атома. А это автоматически означат необходимость отказа от вероятностной трактовки волновой функции.

Целесообразно вспомнить, что некоторые исследователи давно обратили внимание на возможность иной, не вероятностной трактовки волновой функции. Еще в 1926 г. сразу после статьи Шредингера Маделунгом было показано, что уравнение Шредингера отражает собой стационарные потоки некоей среды. Соответствующие преобразования позволяют представить уравнение Шредингера в гидродинамической форме, в которой все основные моменты квантовой модели атома сохранены. В своей статье Маделунг говорит о «гидродинамике континуума», оставляя открытым вопрос о природе этого конти-нуума. При этом у него появляются все гидромеханические пара-метры этого континуума, в том числе и массовая плотность [6],

На возможность трактовки волновой функции как массовой плотности внутриатомной среды в 1940 г. обратил внимание Эддингтон. Он заметил, что «…более последовательным и созвучным духу квантовой механики подходом является, возможно, приписывание плотности непосредственно волновой функции с расщеплением по номинально бесконечному волновому фронту. Интегрирование этой плотности по всему трехмерному пространству дало бы тогда значение массы частицы, представленной волной или волновым пакетом [7; 11, c. 199].

Сама возможность трактовки волновой функции как массовой плотности заставляет поставить вопрос о природе внутриатомной среды, об ее параметрах, структуре и направлениях движения потоков, что неизбежно приводит к необходимости полного пересмотра планетарной модели атома, не предусматривающей внутри атома никакой среды. Наличие среды в свою очередь позволяет поставить вопрос о гидромеха-нических силах внутри атома, о применимости гидромеханиче-ских законов, гидромеханических моделях, о много таком, о чем при вероятностных трактовках не может идти и речи.

Подобная проработка была выполнена автором настоящей работы, в результате чего были созданы вихревые модели атомов, в которых модуль волновой функции получил трактовку как массовая плотность и в которых естественное объяснение нашли все принципы квантовой механики.

 

– Конец работы –

Эта тема принадлежит разделу:

Чем отличается квантовая механика от классической?

На сайте allrefs.net читайте: "Чем отличается квантовая механика от классической?"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: О физической сущности волновой функции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

О некоторых недостатках квантовой механики
  Как известно, квантовая механика – это теория, устанавлива-ющая способ описания и законы движения микрочастиц – элементарных частиц, атомов, молекул, атомных ядер и их систем, напри

Роль атомной модели Резерфорда в становлении квантовой механики
  Важнейшими событиями в науке, от которых берет начало атомная физика, были открытия электрона и радиоактивности. При исследовании прохождения электрического тока через сильно разреж

Соотношения Планка
Впервые квантовые представления, в том числе квантовая постоянная h были введены в 1900 г. М.Планком как результат исследования теплового излучения черного тела. Существовавшая в то время те

О волнах де Бройля
  В 1924 г. де Бройль выступил с гипотезой о том, что корпускулярно-волновой дуализм присущ всем без исключения видам материи – электронам, протонам, атома и т. д., причем количествен

Соотношение неопределенностей Гейзенберга
  Как известно, соотношение неопределенностей Гейзенберга, открытое им в 1927 г. [1], есть фундаментальное положение квантовой теории. Это соотношение утверждает, что не существует та

Дифракция частиц
  Как известно, дифракция волн есть явление, наблюдаемое при прохождении волн мимо края препятствия. Суть явления заключается в том, что после непрозрачного для волн препятствия волны

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги