рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Борные волокна

Борные волокна - Лабораторная Работа, раздел Механика, Структурных и механических характеристик пенопластов Волокна Бора Являются Одним Из Перспективных Армирующих Материалов Композитов...

Волокна бора являются одним из перспективных армирующих материалов композитов с полимерной и металлической матрицами. Волокна бора имеют довольно низкую плотность (2,55…2,65 г/см3), высокую прочность при растяжении sв (до 3500 МПа) и сжатии, высокий модуль упругости

(Е= 380…420 ГПа), высокую твердость и износостойкость (микротвердость

– до 4000 кгс/мм2; твердость по Моосу – 9,3 ед., у алмаза эта твердость равна 10 ед.), высокую температуру плавления (2050°С). Борные волокна имеют большую сдвиговую жесткость (G = 180 ГПа), пониженную тепло- и электропроводность.

Основной метод получения борных волокон – осаждение бора из газовой смеси треххлористого бора (BCl3) и водорода (Н2) на вольфрамовую нить диаметром ~12 мкм при температуре 1000…1100°С под давлением, близким к атмосферному. В результате осаждения образуется сердцевина из боридов вольфрама (WB, W2B5 и WB) диаметром 15…17 мкм, вокруг которой располагается слой поликристаллического бора. Нагрев вольфрамовой нити осуществляется через ртутные электрические контакты, одновременно образующие гидравлические затворы для герметизации камеры реактора. Скорость движения волокна через реактор непрерывного действия составляет 0,8…1 м/мин. В результате осаждения получается бороволокно диаметром, как правило, 100 мкм (иногда 150 и 200 мкм).

Таким образом, борные волокна неоднородны по составу, структуре и анизотропны. Предел прочности сердцевины волокна ниже предела прочности волокна в целом. Сердцевина волокна нагружена большими сжимающими напряжениями, а бор в области, прилегающей к подложке (вольфрамовой нити), – растягивающими. Это приводит к возникновению радиальных трещин в борных волокнах вследствие больших остаточных напряжений, которые растут с увеличением диаметра волокна.

Разрушение волокон бора происходит в основном по дефектам на поверхности волокна. Поверхностное травление позволяет уменьшить дефектность волокна и увеличить его прочность. Еще большего дальнейшего увеличения прочности можно добиться соблюдением абсолютной чистоты реакционной камеры и камеры охлаждения, чтобы свести к минимуму посторонние включения в волокне.

Механические свойства некоторых типов борных волокон приведены в табл. 2.4.

Таблица 2.4

Механические свойства борных волокон

 

    Марка волокна Плотность ρ ×10-3, кг/м3   Диаметр dƒ, мкм Модуль упругости Е Средняя прочность на базе 10 мм σƒ Предельная деформация ε , %  
ГПа
    Avco (B/W)   2,58 2,50 2,50     390-400 390-400   2,52 3,47 3,39   0,6 0,9 0,85
  Hamilton Ltd.division (B/W + SiC)   2,76   2,76         394-403       3,80   3,30     0,95   0,80
  B/W       2,5       3             2,95-3,5       0,75-0,9    

 

Для повышения жаростойкости борных волокон, защиты их от воздействия некоторых металлических матриц и повышения адгезии волокон к некоторым матричным материалам волокна покрывают карбидом кремния путем осаждения из парогазовой фазы в среде аргона и водорода. Волокна бора, покрытые тонким слоем карбида кремния, называются борсиком.

Американские фирмы осуществляют также производство борного волокна осаждением бора на углеродное волокно. Аналогичные работы проводятся и в других странах.

Борные волокна выпускаются промышленностью как в виде моноволокон на катушках, так и в виде полуфабрикатов, представляющих собой комплексные армирующие материалы: ленты полотняного переплетения шириной от 50 до 500 мм, основа которых образована борными волокнами, а уток – полиамидными или другими волокнами.

Волокна бора находят широкое применение в производстве композитов на основе полимерной и алюминиевой матриц. Композиты на основе борных волокон и алюминиевой матрицы имеют ряд преимуществ по сравнению с аналогичными материалами с полимерной матрицей. Они, например, могут работать при температуре до 370°С (640 К) и перерабатываться на обычном технологическом оборудовании, применяемом в металлургическом производстве.

Недостатки борных волокон

1. Прочность борных волокон имеет значительный статистический разброс. Коэффициент вариации прочности в зависимости от дефектности структуры поверхности волокон колеблется в пределах 17…36%.

2. Из-за высокой жесткости и большого диаметра борные волокна довольно ограниченно поддаются ткацкой переработке. Их используют только вдоль основы чаще всего лент, иногда тканей. Вдоль утка используют органоволокна (бороорганоленты и ткани), стекловолокна (боростеклоткани и ленты), углеволокна (бороуглеткани, ленты), комбинированные тканые материалы, например, боростеклоткани, ленты и др.

 

– Конец работы –

Эта тема принадлежит разделу:

Структурных и механических характеристик пенопластов

Содержание Лабораторная работа Получение и исследование структурных и механических характеристик пенопластов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Борные волокна

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Производство пенопластов и деталей из них
Технология производства пенопластов состоит из операций приготовления композиции, введения газовой фазы в полимерную среду (чаще всего путем вспенивания), придания вспененной массе необходимой форм

Пенополиуретаны
Композиции для производства пенополиуретанов содержат изоцианаты, гидроксилсодержащие олигомеры, воду, катализаторы, эмульгаторы, а иногда еще и наполнители, красители и антипирены (вещества, снижа

Пенопласты на основе фенолоформальдегидных смол
(пенофенопласты) Для производства пенофенопластов используют фенолоформальдегидные смолы резольного (термореактивные) и новолачного (термопластичные) типа, реже фенолоамин

Пенопласты на основе эпоксидных смол
(пеноэпоксиды) Пеноэпоксиды – газонаполненные материалы на основе эпоксидных смол. Чаще всего это жесткие материалы с замкнутой структурой ячеек. Основой композиции при по

Порядок выполнения работы
1. Получить пенополистирол с различной кажущейся плотностью вспениванием гранул, содержащих низкокипящую жидкость. 1.1. Провести предварительное вспенивание гранул. Изменяя продолжительнос

Протокол экспериментов
Таблица 1.1 Марка исходного материала Время предварительного вспенивания tпред. всп, мин Насыпная плотность

Непрерывные волокна
Наиболее часто для производства деталей, узлов и агрегатов на основе полимерных матриц применяют стеклянные, органические, углеродные, борные волокна, а также тканые и нетканые материалы на их осно

Стеклянные волокна
При сравнительно малой плотности ((2,4…2,6)∙103 кг/м3) стеклянные волокна имеют высокую прочность, низкую теплопроводность, стойкость к химическому и биологическому возд

Органические волокна
Чаще всего для производства изделий АКТ используют волокна на основе ароматических полиамидов (арамидные волокна). Применяют также полиамидные (например капрон, найлон и др.) и полиимидные волокна.

Углеродные волокна
Углеродные волокна относятся к классу наиболее перспективных армирующих материалов, так как обладают рядом ценных и даже уникальных свойств. Они имеют низкую плотность (1,43…1,83 г/см3),

Металлические волокна и проволоки
Металлические волокна или проволоки наиболее экономичны и часто являются очень эффективными армирующими материалами. Для композиционных материалов, работающих при низких и умеренных температурах, и

Волокна с металлическими и керамическими покрытиями
Нанесение на неметаллические и металлические волокна очень тонких металлических покрытий может существенно улучшить свойства волокна и КМ на их основе. Покрытия при этом могут выполнять сл

Коротковолокнистая арматура
В качестве коротковолокнистой арматуры можно использовать измельченные минеральные волокна, например волокна асбеста. Но наиболее перспективными являются нитевидные монокристаллы или усы.

Входной контроль армирующих материалов
  Целью входного контроля является не только отбраковка некондиционных материалов, но и установление конкретных значений параметров в пределах допуска для последующей корректировки те

Методика проведения входного контроля
Проверке качества армирующих материалов по порокам внешнего вида, соответствия геометрическим размерам и требованиям нормативно-технической документации подвергают 5% объема контролируемых материал

Протокол экспериментов
Таблица 2.14 Результаты контроля и испытания нитей (ровингов)   № п/п Вид армирующего материала (нитей) Диаме

Полимерные связующие на основе полиэфирных смол
Большую часть полиэфирных смол используют в качестве матричных материалов при производстве деталей, узлов и агрегатов из стеклопластиков в авиационно-космической технике, кораблестроении, автомобил

Полимерные связующие на основе эпоксидных смол
Эпоксидные смолы и многокомпонентные связующие на их основе широко применяются в качестве матричных материалов при производстве деталей, узлов и агрегатов АКТ из ПКМ. Это объясняется их высокой адг

Состав и свойства отвержденных полимерных связующих
на основе эпоксидных смол   Марка связующего Смола или состав связующего и вид отвердителя Прочность, МПа Уда

Полимерные связующие на основе фенолоформальдегидных смол
Фенолоформальдегидные смолы применяют в качестве связующего благодаря хорошо налаженному и относительно простому их производству, низкой себестоимости и сочетанию таких ценных свойств в отвержденно

Связующие на основе кремнийорганических смол
Кремнийорганические смолы (полиорганосилоксаны) отличаются от других смол высокой теплостойкостью и возможностью работать в широком интервале температур (173…623 К). Кроме этого они проявляют высок

Матричные материалы на основе термопластичных смол
Для изготовления деталей конструкционного, радио- и электротехнического назначения довольно широко применяются термопластичные смолы; полиэтилены, полипропилены, фторопласты, полиэтилентерефталаты,

Состав 50%-ного раствора связующего
    Наименование компонентов Марка связующего 5-211-Б, мас.ч. 5-211БН, мас.ч. ЭНФ

Приготовление связующих
Перед употреблением все компоненты связующего должны пройти входной контроль на соответствие паспортным данным. Связующие готовят партиями. За партию принимают количество связующего, изгот

Связующего
Контроль связующего проводят для каждой партии по окончании приготовления, а также после хранения ранее приготовленного связующего перед пропиткой армирующего материала. Основными технологическими

Плотность и концентрация 50%-ного раствора связующего
  Марка связующего Плотность связующего при температуре 20°С, г/см3 Концентрация связующего при температуре 20°С, %

Массы капли
  Прибор состоит из штатива 1, на котором с помощью держателя 2 закреплена изогнутая стеклянная трубка 3, свободная для проникновения раствора с одной стороны и имеющая резиновую груш

Порядок выполнения работы
  1. Изучить и законспектировать содержание работы. 2. Определить необходимое количество связующего и его компонентов (табл. 3.4, 3.5 и формулы (3.2), (3.3) для пропитки зада

Особенности производства деталей, узлов и агрегатов из КМ
Важнейшее преимущество композиционных материалов – возможность создания из них деталей, узлов и элементов конструкций с заранее заданными свойствами, наиболее полно отражающими характер и условия р

С металлическим покрытием
(диаметр усов - 0,025 мм, Vв = 0,45)   Требования к матричным материалам: - высокая адгезия к армирующим материалам; - химическая стойкост

Определение прочности однонаправленных КМ
с непрерывными волокнами в направлении армирования Исходными данными для расчета являются (рис. 4.3): 1) диаграмма истинных напряжений s = f(e) волокна (1); 2) диа

Порядок выполнения работы
1. Ознакомиться с целью и содержанием лабораторной работы. 2. Получить задание для расчета двух видов однонаправленных КМ (см. приложение). 3. Выписать название, марку и основные

Теории адгезии
Под адгезией принято понимать сцепление, возникающее между двумя приведенными в соприкосновение разнородными материалами. В случае клеевых соединений адгезия – это сцепление между к

Выбор клея и его компонентов
При выборе клея учитывают прежде всего химическую природу склеиваемых материалов, а также условия работы клеевого соединения, конструктивные особенности изделия и требования к технологическим свойс

Влияние наполнителей на свойства клеев и клеевых соединений
Различные наполнители органической и минеральной природы оказывают существенное влияние на процесс формирования адгезионного контакта и свойства клеевого соединения. Введение наполнителей снижает о

Общие этапы технологии склеивания деталей
1. Подготовка склеиваемых поверхностей – заключается в подгонке, зачистке и обезжировании склеиваемых поверхностей. Иногда требуется специальная обработка поверхностей перед склеиванием.

Клеи на основе немодифицированных фенолоформальдегидных смол
В зависимости от соотношения исходных продуктов (фенола и формальдегида, применяемых инициаторов или катализаторов (щелочных или кислых) и режима изготовления фенолоформальдегидные смолы подразделя

Модифицированных поливинилацеталями
К этой группе относятся клеи типа БФ. Наиболее широко известны клеи марок БФ-2, БФ-4, представляющие собой спиртовые растворы термореактивной фенолоформальдегидной смолы, совмещенной

Клеи на основе фенолоформальдегидных смол, модифицированных термопластами и эластомерами
Для модификации фенолоформальдегидных смол в целях создания термостойких клеев, пригодных для склеивания металлов в силовых конструкциях, используют различные термопласты и эластомеры (син

Теплостойкие и высокотеплостойкие клеи
Клей ВК-8 - фенолокремнийорганическая композиция, модифицированная синтетическим каучуком. Композиция содержит неорганический наполнитель. Прочность - до 250 кгс/см2 при

Клеи на основе эпоксидных смол
Эпоксидные клеи состоят из эпоксидной смолы, отвердителя и пластификатора. Пластификатор, как правило, вводится в состав смолы и тогда клей двухкомпонентный. В зависимости от применяемых отвердител

Изделий из оргстекла
В качестве клеев для склеивания оргстекла используют чистые растворители, клеящие лаки и полимеризационные клеи. Клеи-растворители широко применяют для склеивания изделий из органического

Результаты испытаний склеенных образцов на сдвиг
  № п/п Склеиваемые материалы Разруша-ющая нагрузка Р×30×10*, Н Длина клеевого соедин

Библиографический список
1. Конструкционное материаловедение/ Борисевич В.К., Виноградский А.Ф., Карпов Я.С., Самойлов В.Я., Семишов Н.И.: В 2 кн. - Х.: Нац. аэрокосм. ун-т им. Н.Е. Жуковского «ХАИ», 2002. – Кн.2. – Немета

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги