рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Порядок выполнения работы

Порядок выполнения работы - Лабораторная Работа, раздел Механика, Структурных и механических характеристик пенопластов 1. Получить Пенополистирол С Различной Кажущейся Плотностью Вспениванием Гран...

1. Получить пенополистирол с различной кажущейся плотностью вспениванием гранул, содержащих низкокипящую жидкость.

1.1. Провести предварительное вспенивание гранул. Изменяя продолжительность вспенивания, получить гранулы с различной насыпной плотностью. Для этого необходимо полимер марки ПСВ (полистирол самовспенивающийся без добавок) в количестве 5…7 г рассыпать равномерно на тонкий металлический противень и поместить его в термопечь, где выдержать при температуре 102±2оС в течение 3 мин. Затем противень извлечь из печи и гранулы высыпать на лист фильтровальной бумаги (партия 1).

Описанную операцию повторить еще два раза, увеличив продолжительность предварительного вспенивания до 4 и 5 минут (партия 2 и 3).

Предварительно вспененный полистирол необходимо оставить созревать в комнатных условиях не менее 4 часов.

1.2. Определить насыпную плотность вспененных гранул.

Из каждой партии гранул взять навеску около 2 г (с точностью до 0.01 г), высыпать ее в мерный цилиндр на 100 мл и замерить объем, занимаемый гранулами. Насыпную плотность рассчитать по формуле

кг/м3 , (1.1)

где - масса гранул, кг,

- объем, занимаемый гранулами, м3.

Результаты занести в табл. 1.1.

1.3. Заключительное вспенивание.

Заключительное вспенивание провести в специальных цилиндрических формах.

Каждую партию гранул (1 – 3) засыпать в формы, предварительно смазанные мыльной пеной, до верхнего уровня. Формы закрыть, сжать и поместить на 10 – 15 минут в термопечь при температуре 110…115оС. Формы вынуть из шкафа и охладить на воздухе до комнатной температуры, после чего полученные образцы пенопласта извлечь из форм.

1.4. Определить кажущуюся плотность готовых образцов пенопласта.

Измерить размеры образцов пенопласта штангенциркулем с точностью до 0,2 мм не менее чем в трех местах, используя в дальнейших расчетах среднеарифметическое значение. Определить среднюю высоту образцов и среднюю площадь их поперечного сечения (Sо, м2). Результаты занести в табл. 1.1.

Взвесить образцы на весах с точностью до 0,01 г и рассчитать их кажущуюся плотность по формуле

кг/м3, (1.2)

где - масса образца, кг.

- объем образца, м3.

Результаты занести в табл. 1.1.

Построить график зависимости насыпной плотности гранул rн и кажущейся плотности rк пенополистирола от продолжительности предварительного вспенивания.

2. Изучить структуру пенополистирола с различной кажущейся плотностью.

2.1. Изучить и зарисовать макроструктуру пенополистирола.

2.2. Изучить структуру оболочки и центральной части ячейки пенополистирола под микроскопом.

Из середины плиты лезвием безопасной бритвы вырезать тонкий слой пенопласта. После чего полученный образец поместить на предметный столик микроскопа, выбрав объектив с семи-восьмикратным увеличением и окуляр с увеличением в 10-12 раз. В окуляр вставить стеклышко с сеткой, цена деления которой известна. Зарисовать увиденное в микроскоп изображение оболочки и центральной части ячейки пенопласта.

3. Провести испытания полученных образцов пенопласта на сжатие, построить графики зависимости силы от деформации Р = f(e) для образцов с различным временем предварительного вспенивания.

Поочередно провести испытания трех образцов на ручном гидравлическом прессе, фиксируя высоту образцов (h) через каждые две атмосферы по манометру.

Усилие сжатия в каждый момент определяется как произведение давления по манометру р, кгс/см2, на площадь поперечного сечения поршня, на который это давление действует (Sп » 30 см2). Для перевода силы в ньютоны это произведение надо умножить на 9,8 (можно округлить до 10).

Сила, таким образом, равна:

Р = рSп×10 Н. (1.3)

Результаты испытаний занести в табл. 1.2.

Деформацию в процессе испытаний определить по формуле

e=(Dh/h0)×100%. (1.4)

Условные напряжения в каждый момент сжатия определить по формуле

, (1.5)

где S0 – площадь поперечного сечения пенопластового образца, м2.

По результатам испытаний построить диаграммы сжатия пенопластов Р=f(e) для трех образцов (рис.1.1).

Рис. 1.1. Диаграмма сжатия пенопластов:

1, 2 – с резким изменением характера диаграммы при Рпр;

3 – без резкого изменения характера диаграммы

 

4. Определить условное разрушающее напряжение сжатия образцов пенополистирола.

Условным разрушающим напряжением пенопласта (пределом прочности при сжатии) называется напряжение, приводящее к резкому уменьшению начальной жесткости пенопласта.

Из диаграммы сжатия определить предельное усилие (рис. 1.1, кривые 1 и 2). При отсутствии резкого изменения характера диаграммы сжатия определить усилие , вызывающее 10%-ную деформацию образца (рис. 1.1, кривая 3).

Условное разрушающее напряжение при сжатии рассчитать по формуле

МПа, (1.6)

где - предельная нагрузка, Н;

S0 – площадь поперечного сечения образца, м2.

Напряжения сжатия при 10%-ной деформации определить по формуле

 

МПа, (1.7)

где – усилие сжатия при 10%-ной деформации.

5. Определить принадлежность образцов к соответствующему классу по жесткости.

Определить напряжения сжатия s50сж во всех образцах при 50%-ной деформации.

Результаты расчетов занести в табл. 1.3.

Сделать выводы о принадлежности пенопластов к тому или иному классу по жесткости (табл. 1.3).

6. Оформить отчет по лабораторной работе.

– Конец работы –

Эта тема принадлежит разделу:

Структурных и механических характеристик пенопластов

Содержание Лабораторная работа Получение и исследование структурных и механических характеристик пенопластов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Порядок выполнения работы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Производство пенопластов и деталей из них
Технология производства пенопластов состоит из операций приготовления композиции, введения газовой фазы в полимерную среду (чаще всего путем вспенивания), придания вспененной массе необходимой форм

Пенополиуретаны
Композиции для производства пенополиуретанов содержат изоцианаты, гидроксилсодержащие олигомеры, воду, катализаторы, эмульгаторы, а иногда еще и наполнители, красители и антипирены (вещества, снижа

Пенопласты на основе фенолоформальдегидных смол
(пенофенопласты) Для производства пенофенопластов используют фенолоформальдегидные смолы резольного (термореактивные) и новолачного (термопластичные) типа, реже фенолоамин

Пенопласты на основе эпоксидных смол
(пеноэпоксиды) Пеноэпоксиды – газонаполненные материалы на основе эпоксидных смол. Чаще всего это жесткие материалы с замкнутой структурой ячеек. Основой композиции при по

Протокол экспериментов
Таблица 1.1 Марка исходного материала Время предварительного вспенивания tпред. всп, мин Насыпная плотность

Непрерывные волокна
Наиболее часто для производства деталей, узлов и агрегатов на основе полимерных матриц применяют стеклянные, органические, углеродные, борные волокна, а также тканые и нетканые материалы на их осно

Стеклянные волокна
При сравнительно малой плотности ((2,4…2,6)∙103 кг/м3) стеклянные волокна имеют высокую прочность, низкую теплопроводность, стойкость к химическому и биологическому возд

Органические волокна
Чаще всего для производства изделий АКТ используют волокна на основе ароматических полиамидов (арамидные волокна). Применяют также полиамидные (например капрон, найлон и др.) и полиимидные волокна.

Углеродные волокна
Углеродные волокна относятся к классу наиболее перспективных армирующих материалов, так как обладают рядом ценных и даже уникальных свойств. Они имеют низкую плотность (1,43…1,83 г/см3),

Борные волокна
Волокна бора являются одним из перспективных армирующих материалов композитов с полимерной и металлической матрицами. Волокна бора имеют довольно низкую плотность (2,55…2,65 г/см3), высо

Металлические волокна и проволоки
Металлические волокна или проволоки наиболее экономичны и часто являются очень эффективными армирующими материалами. Для композиционных материалов, работающих при низких и умеренных температурах, и

Волокна с металлическими и керамическими покрытиями
Нанесение на неметаллические и металлические волокна очень тонких металлических покрытий может существенно улучшить свойства волокна и КМ на их основе. Покрытия при этом могут выполнять сл

Коротковолокнистая арматура
В качестве коротковолокнистой арматуры можно использовать измельченные минеральные волокна, например волокна асбеста. Но наиболее перспективными являются нитевидные монокристаллы или усы.

Входной контроль армирующих материалов
  Целью входного контроля является не только отбраковка некондиционных материалов, но и установление конкретных значений параметров в пределах допуска для последующей корректировки те

Методика проведения входного контроля
Проверке качества армирующих материалов по порокам внешнего вида, соответствия геометрическим размерам и требованиям нормативно-технической документации подвергают 5% объема контролируемых материал

Протокол экспериментов
Таблица 2.14 Результаты контроля и испытания нитей (ровингов)   № п/п Вид армирующего материала (нитей) Диаме

Полимерные связующие на основе полиэфирных смол
Большую часть полиэфирных смол используют в качестве матричных материалов при производстве деталей, узлов и агрегатов из стеклопластиков в авиационно-космической технике, кораблестроении, автомобил

Полимерные связующие на основе эпоксидных смол
Эпоксидные смолы и многокомпонентные связующие на их основе широко применяются в качестве матричных материалов при производстве деталей, узлов и агрегатов АКТ из ПКМ. Это объясняется их высокой адг

Состав и свойства отвержденных полимерных связующих
на основе эпоксидных смол   Марка связующего Смола или состав связующего и вид отвердителя Прочность, МПа Уда

Полимерные связующие на основе фенолоформальдегидных смол
Фенолоформальдегидные смолы применяют в качестве связующего благодаря хорошо налаженному и относительно простому их производству, низкой себестоимости и сочетанию таких ценных свойств в отвержденно

Связующие на основе кремнийорганических смол
Кремнийорганические смолы (полиорганосилоксаны) отличаются от других смол высокой теплостойкостью и возможностью работать в широком интервале температур (173…623 К). Кроме этого они проявляют высок

Матричные материалы на основе термопластичных смол
Для изготовления деталей конструкционного, радио- и электротехнического назначения довольно широко применяются термопластичные смолы; полиэтилены, полипропилены, фторопласты, полиэтилентерефталаты,

Состав 50%-ного раствора связующего
    Наименование компонентов Марка связующего 5-211-Б, мас.ч. 5-211БН, мас.ч. ЭНФ

Приготовление связующих
Перед употреблением все компоненты связующего должны пройти входной контроль на соответствие паспортным данным. Связующие готовят партиями. За партию принимают количество связующего, изгот

Связующего
Контроль связующего проводят для каждой партии по окончании приготовления, а также после хранения ранее приготовленного связующего перед пропиткой армирующего материала. Основными технологическими

Плотность и концентрация 50%-ного раствора связующего
  Марка связующего Плотность связующего при температуре 20°С, г/см3 Концентрация связующего при температуре 20°С, %

Массы капли
  Прибор состоит из штатива 1, на котором с помощью держателя 2 закреплена изогнутая стеклянная трубка 3, свободная для проникновения раствора с одной стороны и имеющая резиновую груш

Порядок выполнения работы
  1. Изучить и законспектировать содержание работы. 2. Определить необходимое количество связующего и его компонентов (табл. 3.4, 3.5 и формулы (3.2), (3.3) для пропитки зада

Особенности производства деталей, узлов и агрегатов из КМ
Важнейшее преимущество композиционных материалов – возможность создания из них деталей, узлов и элементов конструкций с заранее заданными свойствами, наиболее полно отражающими характер и условия р

С металлическим покрытием
(диаметр усов - 0,025 мм, Vв = 0,45)   Требования к матричным материалам: - высокая адгезия к армирующим материалам; - химическая стойкост

Определение прочности однонаправленных КМ
с непрерывными волокнами в направлении армирования Исходными данными для расчета являются (рис. 4.3): 1) диаграмма истинных напряжений s = f(e) волокна (1); 2) диа

Порядок выполнения работы
1. Ознакомиться с целью и содержанием лабораторной работы. 2. Получить задание для расчета двух видов однонаправленных КМ (см. приложение). 3. Выписать название, марку и основные

Теории адгезии
Под адгезией принято понимать сцепление, возникающее между двумя приведенными в соприкосновение разнородными материалами. В случае клеевых соединений адгезия – это сцепление между к

Выбор клея и его компонентов
При выборе клея учитывают прежде всего химическую природу склеиваемых материалов, а также условия работы клеевого соединения, конструктивные особенности изделия и требования к технологическим свойс

Влияние наполнителей на свойства клеев и клеевых соединений
Различные наполнители органической и минеральной природы оказывают существенное влияние на процесс формирования адгезионного контакта и свойства клеевого соединения. Введение наполнителей снижает о

Общие этапы технологии склеивания деталей
1. Подготовка склеиваемых поверхностей – заключается в подгонке, зачистке и обезжировании склеиваемых поверхностей. Иногда требуется специальная обработка поверхностей перед склеиванием.

Клеи на основе немодифицированных фенолоформальдегидных смол
В зависимости от соотношения исходных продуктов (фенола и формальдегида, применяемых инициаторов или катализаторов (щелочных или кислых) и режима изготовления фенолоформальдегидные смолы подразделя

Модифицированных поливинилацеталями
К этой группе относятся клеи типа БФ. Наиболее широко известны клеи марок БФ-2, БФ-4, представляющие собой спиртовые растворы термореактивной фенолоформальдегидной смолы, совмещенной

Клеи на основе фенолоформальдегидных смол, модифицированных термопластами и эластомерами
Для модификации фенолоформальдегидных смол в целях создания термостойких клеев, пригодных для склеивания металлов в силовых конструкциях, используют различные термопласты и эластомеры (син

Теплостойкие и высокотеплостойкие клеи
Клей ВК-8 - фенолокремнийорганическая композиция, модифицированная синтетическим каучуком. Композиция содержит неорганический наполнитель. Прочность - до 250 кгс/см2 при

Клеи на основе эпоксидных смол
Эпоксидные клеи состоят из эпоксидной смолы, отвердителя и пластификатора. Пластификатор, как правило, вводится в состав смолы и тогда клей двухкомпонентный. В зависимости от применяемых отвердител

Изделий из оргстекла
В качестве клеев для склеивания оргстекла используют чистые растворители, клеящие лаки и полимеризационные клеи. Клеи-растворители широко применяют для склеивания изделий из органического

Результаты испытаний склеенных образцов на сдвиг
  № п/п Склеиваемые материалы Разруша-ющая нагрузка Р×30×10*, Н Длина клеевого соедин

Библиографический список
1. Конструкционное материаловедение/ Борисевич В.К., Виноградский А.Ф., Карпов Я.С., Самойлов В.Я., Семишов Н.И.: В 2 кн. - Х.: Нац. аэрокосм. ун-т им. Н.Е. Жуковского «ХАИ», 2002. – Кн.2. – Немета

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги