рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математический уровень алгоритмического базиса структурных моделей

Математический уровень алгоритмического базиса структурных моделей - раздел Механика, Основные термины и определения. Концепция структурного моделирования электромеханических систем Для Специалистов В Области Эмс Наиболее Удобно И Традиционно Графическое Опис...

Для специалистов в области ЭМС наиболее удобно и традиционно графическое описание моделей в виде структурных схем.

Если фрагменты математического описания разделить на блоки в соответствии с физическими процессами, протекающими в системе, определить входные и выходные координаты и внутренние параметры каждого блока и изобразить схему взаимодействия блоков, то получим структурную модель математического уровня (СММУ). Таким образом, можно утверждать, что «кирпичиками», из которых конструируется СММУ, являются динамические элементы.

В общем случае динамический элемент представляется в виде блока, осуществляющего преобразования входных воздействий в выходной сигнал элементов в соответствии с заданной функцией.

Многообразие указанных функций предопределяет необходимость разделения динамических элементов на классы. Укажем наиболее используемые классы динамических элементов:

1. Элементы задания внешних воздействий (класс V);

2. Линейные безынерционные элементы (класс U);.

3. Линейные инерционные элементы (класс L);.

4. Нелинейные функциональные элементы (класс N);.

5. Специальные функциональные элементы (класс C);

6. Дискретные функциональные элементы (класс );

7. Дискретные фильтры (класс Z);

8. Контролирующие функциональные элементы (класс K);

9. Элементы описания дискретного автомата (класс DA).

Каждый динамический элемент характеризуется следующими атрибутами:

– порядковым номером;

– идентификатором класса;

– описанием выполняемой функции;

– параметрами указанной функции;

– номером активизирующего элемента, если данный динамический элемент может находиться в активном или пассивном состоянии.

Рассмотрим краткие характеристики элементов каждого класса.

1. Элементы задания внешних воздействий (класс V) предназначены для формирования внешних ступенчатых воздействий. Элемент характеризуется величиной ступенчатого сигнала А и временем его приложения t. Выходной сигнал элемента определяется в каждый момент времени как

.   (2.1)

 

Графически элемент изображается в виде прямоугольника (рис. 2.1) с одним выходом.

Для получения более сложных форм внешних воздействий необходимо использовать комбинации элементов возмущения с динамическими элементами других классов.

2. Линейный безынерционный элемент (класс U) характеризуется коэффициентом передачи KU. В каждый момент времени значение выходного сигнала формируется как

  ,   (2.2)

где – значение входного сигнала элемента, – значение коэффициента передачи.

Графическое представление элемента класса U приведено на рис. 2.2.

3. Линейные инерционные элементы (класс L) реализуют линейное преобразование входного сигнала в выходной в соответствии с передаточной функцией

    (2.3)

 

что соответствует дифференциальному уравнению n- порядка

 

  (2.4)

при нулевых начальных условиях.

В каждый момент времени значение выходного сигнала формируется в результате численного интегрирования дифференциального уравнения (2.4).


 

 

 

Рис. 2.1. Графическое представление и задание параметров элемента класса V

 

       
 
   
 
 

 

 


 

 

Рис. 2.2. Графическое представление и задание параметров элемента класса U

 

 

Графическое представление элемента класса L приведено на рис. 2.3. С использованием элементов перечисленных выше трех классов могут быть построены структурные модели математического уровня линейных электромеханических систем.

Так, например, модель для изучения динамических процессов пуска и остановки электродвигателя постоянного тока (ДПТ) независимого возбуждения при постоянном магнитном потоке () принимает вид, приведенный на рис. 2.4. Здесь электромеханические процессы преобразования энергии описаны следующей системой линейных дифференциальных уравнений:

  (2.5)

Входное напряжение электродвигателя U нарастает по экспоненциальному закону и мгновенно отключается при достижении модельного времени значения t=1.5с.

4. Нелинейные функциональные элементы (класс N) осуществляют нелинейные и логические преобразования входных сигналов в выходные. Класс этих элементов условно может быть разделен на три подкласса:

- статические безынерционные нелинейности с одним входом и одним выходом;

- статические безынерционные нелинейности со многими входами и одним выходом;

- динамические нелинейные элементы.

Примеры графического представления нелинейных функциональных элементов приведены на рис. 2.5. В общем случае с помощью нелинейных элементов осуществляется операция

, (2.6)

где x(t) – вектор входных сигналов.

A – вектор параметров, t – время.

Используя отдельные нелинейные элементы, приведенную на рис. 2.4 структурную модель можно перестроить для изучения динамических процессов в ДПТ при переменном потоке возбуждения

= var).

При этом входное напряжение U линейно нарастает до заданного уровня (рис. 2.6).

Здесь использованы три вида нелинейных элементов:

ограничение (элемент №4) – для формирования кривой входного напряжения;

умножение (элементы 6,7) – для перемножения мгновенных значений переменных;

табличная нелинейность – для учета реальной кривой намагничивания электродвигателя.

На начальном этапе изучения теоретического материала и выполнения практических заданий и лабораторного практикума, как правило, используются элементы четырех рассмотренных выше классов. Поэтому характеристики других классов элементов мы пока приводить не будем.

Базовый состав функциональных элементов структурных моделей математического уровня приведен в приложении.

Структурная модель конкретной электромеханической системы конструируется из базовых элементов путем объединения точек входа и выхода и введения узлов алгебраического суммирования сигналов. Исходной информацией для построения структурных моделей математического уровня могут быть математическое описание динамических процессов в форме дифференциальных уравнений или структурная схема исследуемой системы.

С появлением средств графического взаимодействия отпала необходимость в разработке, изучении и использовании специализированных языков моделирования.

К настоящему времени практически все системы моделирования имеют интерфейсные средства, позволяющие пользователю быстро и удобно нарисовать структурную модель для дальнейшей постановки имитационных экспериментов.

– Конец работы –

Эта тема принадлежит разделу:

Основные термины и определения. Концепция структурного моделирования электромеханических систем

Функционирование электрооборудования в автономных энергосистемах АЭС имеет ряд особенностей связанных с их ограниченной мощностью а также с... Поэтому данное учебное пособие посвящено изучению современных методов и... В настоящее время изучение электромеханических машинно вентильных систем МВС совместно с полупроводниковыми...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математический уровень алгоритмического базиса структурных моделей

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные термины и определения. Концепция структурного моделирования электромеханических систем
  До введения общих понятий моделирования и математической модели определим объект моделирования с точки зрения теории моделирования. Таким объектом в нашем случа

Алгоритмический базис структурного моделирования электромеханических систем
  Под алгоритмическим базисом будем понимать совокупность средств построения моделей, методов их графического представления и алгоритмов преобразования этих моделей [1].

Объясните принцип действия модели двигателя постоянного тока и формирования выходных величин.
    Рис. 2.3. Графическое представление и задание параметров элемента класса L

Функциональный уровень алгоритмического базиса структурных моделей
Структурные модели математического уровня (СММУ), построенные для реальных электромеханических систем, отличаются наличием большого числа функциональных элементов, многообразием межэлементных связе

Алгоритмические модели динамических систем
4.1. Описание моделей с помощью N - графов Для рассмотрения алгоритмов преобразования моделей, формируемых пользователем (СМФУ, СММУ), необходимо ознакомитьс

Представления моделей динамических систем методом структурных матриц
Аппарат структурных матриц, предложенный Л. Г. Шатихиным [1], позволяет в определенной степени объединить достоинства матричных методов и средств структурного представления динамических систем.

Получение и преобразование концептуальных моделей
Начальный этап конструирования моделей в задачах моделирования и проектирования, как правило, связан с формированием первоначального образа объекта или системы [1]. Здесь указываются основные соста

Получения и преобразования детализированных форм концептуальных моделей
Нарисованная на экране монитора концептуальная модель является лишь внешней частью «айсберга» информации, которую в рамках поставленной задачи необходимо ввести пользователю, найти в электронных ба

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги