рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Квантовая химия

Квантовая химия - раздел Химия, ХИМИЯ XX ВЕКА Для Того, Чтобы Объяснить Устойчивость Атома, Нильс Бор Соединил В Своей Моде...

Для того, чтобы объяснить устойчивость атома, Нильс Бор соединил в своей модели классические и квантовые представления о движении электрона. Однако искусственность такого соединения была очевидна с самого начала. Развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени и т.д., что способствовало коренному преобразованию картины мира. В конце 20-х – начале 30-х годов XX века на основе квантовой теории сформировались принципиально новые теории строения атома и образования химической связи.

После создания Альбертом Эйнштейном фотонной теории света (1905) и выведения им статистических законов электронных переходов в атоме (1917) в физике обострилась проблема "волна – частица". Если в XVIII-XIX веках имелись расхождения между различными учеными, которые для объяснения одних и тех же явлений в оптике привлекали либо волновую, либо корпускулярную теорию, то теперь противоречие приобрело принципиальный характер: одни явления (дифракция) интерпретировались с волновых позиций, а другие (фотоэффект) – с корпускулярных. Разрешение этого противоречия предложил в 1924 г. французский физик Луи Виктор Пьер Раймон де Бройль, приписавший волновые свойства частице. Распространив идею о двойственной природе света на вещество, де Бройль предположил наличие у материальных частиц волновых свойств, однозначно связанных с массой и энергией. Он показал, что движению электрона может соответствовать некоторая волна материи, так же как движению светового кванта соответствует световая волна. Де Бройль предложил объяснить квантовые условия теории Бора с помощью представления о волнах материи. Волна, движущаяся вокруг ядра атома, по геометрическим соображениям может быть только стационарной волной; длина орбиты должна быть кратной целому числу длин волн. Гипотеза де Бройля о наличии у электронов волновых свойств была подтверждена обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину (позже будет обнаружена дифракция атомов и молекул).

Исходя из идеи де Бройля о волнах материи, немецкий физик Эрвин Шрёдингер в 1926 г. вывел основное уравнение т.н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой системы и их изменение во времени. Шредингер дал общее правило преобразования классических уравнений в волновые. В рамках волновой механики атом можно было представить в виде ядра, окруженного стационарной волной материи. Волновая функция определяла плотность вероятности нахождения электрона в данной точке.

В том же 1926 г. другой немецкий физик Вернер Гейзенберг разработал свой вариант квантовой теории атома в виде матричной механики, отталкиваясь при этом от сформулированного Бором принципа соответствия. Согласно принципу соответствия, законы квантовой физики должны переходить в классические законы, когда квантовая дискретность стремится к нулю при увеличении квантового числа). В более общем виде принцип соответствия можно сформулировать следующим образом: новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Квантовая механика Гейзенберга позволяла объяснить существование стационарных квантованных энергетических состояний и рассчитать энергетические уровни различных систем.

Результаты, к которым приводили методы, используемые в волновой механике Шрёдингера и матричной механике Гейзенберга, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные.

Однако изначально волновая и матричная механики имели принципиальные различия в подходах. У Шрёдингера частица выступала как чисто волновое образование, т.е. частица есть место волны, в котором сосредоточена наибольшая энергия волны. Интерпретация Шрёдингера представляла собой, по сути, попытку создать более или менее наглядные модели в духе классической физики. Гейзенберг же сформулировал принцип неопределенности, в соответствии с которым точность определения координаты частицы обратно пропорциональна точности определения её скорости. Принцип неопределенности указывает на то, что частицы могут вести себя как волны – они как бы "размазаны" в пространстве, поэтому можно говорить не об их точных координатах, а лишь о вероятности их обнаружения в определенном пространстве. Таким образом, квантовая механика фиксирует корпускулярно-волновой дуализм – в одних случаях удобнее частицы считать волнами, в других, наоборот, волны частицами.

С принципом неопределённости поначалу соглашались далеко не все физики; его всеобщему признанию предшествовала довольно длительная дискуссия. Осуществлённая Гейзенбергом и развитая Бором интерпретация квантовой теории получила название копенгагенской. В рамках данной интерпретации основным положением квантовой теории выступает принцип дополнительности, означающий требование применять для получения целостной картины изучаемого объекта взаимоисключающие классы понятий, приборов и исследовательских процедур, которые используются в своих специфических условиях и взаимно дополняют друг друга. Принцип дополнительности, таким образом, позволил дополнить классические теории квантовыми, а не противопоставить их друг другу.

Вскоре после того, как Гейзенберг и Шрёдингер разработали квантовую механику, Поль Адриен Морис Дирак предложил более общую теорию, в которой элементы специальной теории относительности Эйнштейна сочетались с волновым уравнением. Уравнение Дирака применимо к частицам, движущимся с произвольными скоростями. Спин и магнитные свойства электрона следовали из теории Дирака без каких бы то ни было дополнительных предположений. Кроме того, теория Дирака предсказывала существование античастиц, таких, как позитрон и антипротон, – двойников частиц с противоположными по знак электрическими зарядами.

Квантово-механический подход к строению атома привёл к созданию принципиально новых представлений о природе химической связи. Уже в 1927 г. Вальтер Гейтлер и Фриц Лондон начали разрабатывать квантовомеханическую теорию химической связи и выполнили приближённый расчёт молекулы водорода. Распространение метода Гейтлера-Лондона на многоатомные молекулы привело к созданию метода валентных связей, который разработали в 1928-1931 гг. Лайнус Карл Полинг и Джон Кларк Слэтер. Основная идея этого метода заключается в предположении, что атомные орбитали сохраняют при образовании молекулы известную индивидуальность. В 1928 г. Полинг предложил теорию резонанса и идею гибридизации атомных орбиталей, в 1932 г. – новое количественное понятие электроотрицательности и шкалу электроотрицательностей, выразил зависимость между электротрицательностью и энергией химической связи.

Фридрих Хунд, Роберт Сандерсон Малликен и Джон Эдвард Леннард-Джонс в 1929 г. начали разработку метода молекулярных орбиталей. В основу ММО заложено представление о полной потере индивидуальности атомов, соединившихся в молекулу. Молекула, таким образом, состоит не из атомов, а представляет собой новую систему, образованную несколькими атомными ядрами и движущимися в их поле электронами. Фридрих Хунд предложил также современную классификацию химических связей; в 1931 г. он пришёл к выводу о существовании двух основных типов химических связей – простой, или σ-связи, и π-связи. В том же году немецкий физик Эрих Хюккель распространил метод МО на органические соединения, сформулировав в правило ароматической стабильности (4n+2), устанавливающее принадлежность вещества к ароматическому ряду.

Таким образом, в квантовой химии сразу выделились два различных подхода к пониманию химической связи: метод молекулярных орбиталей и метод валентных связей. Сравнивая эти два метода, нетрудно заметить известные аналогии с теориями структурной химии XIX века – различия этих методов напоминают различия между новой теорией типов и теорией валентности. ММО, как некогда новая теория типов, рассматривает молекулу как принципиально новое, единое образование; МВС, подобно теории валентности, в значительной степени представляет собой аддитивный подход. Поскольку квантово-механическая модель атома оказалась куда менее наглядной, чем классическая, метод ВС как представление, которое, сохранив наглядность, не слишком противоречило истине, получил (особенно поначалу) более широкое распространение. Однако, несмотря на различия в подходах, оба метода приводят к практически одинаковым результатам.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами (что, кстати говоря, являлось труднейшим вопросом атомизма, начиная от Левкиппа и Демокрита). Кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности.

 

– Конец работы –

Эта тема принадлежит разделу:

ХИМИЯ XX ВЕКА

На сайте allrefs.net читайте: "ХИМИЯ XX ВЕКА"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Квантовая химия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ХИМИЯ XX ВЕКА
Делимость "неделимого" - Модели атома - Химическая связь - Квантовая химия "Делимость неделимого" Открытие делимости атома, ознаменовавшее соб

Модели строения атома
Первые модели строения атома появляются в самом начале XX века. Жан Перрен в 1901 г. высказал предположение о ядерно-планетарном устройстве атома. Подобную же модель предложил в 1904 г. японский фи

Представления о природе химической связи
На протяжении всего XIX века химия, основанная на атомно-молекулярной теории, не могла дать никаких объяснений природе связи между атомами. Понятие валентности, при всей плодотворности его применен

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги