рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Степени окисления мышьяка, селена, брома

Степени окисления мышьяка, селена, брома - раздел Химия, ОСНОВЫ НЕОРГАНИЧЕСКОЙ ХИМИИ Элемент     Степень Окисления &nb...

Элемент     Степень окисления   Соединения    
высшая   низшая  
As   +5   -3   Н3АsO4; Н3Аs  
Se   +6   -2   SeO3; Na2Se  
Br   +7   -1   HBrO4; KBr  

Пример 2. У какого из элементов четвертого периода – марганца или брома – сильнее выражены металлические свойства?

Решение. Электронные формулы данных элементов

25Mn 1s22s22p63s23p63d54s2

35Br 1s22s22p63s23p63d104s24p5

Марганец – d-элемент VIIB-группы, а бром – р-элемент VIIA-группы. На внешнем энергетическом уровне у атома мар­ганца два электрона, а у атома брома – семь. Атомы типичных металлов характеризуются наличием небольшого числа элект­ронов на внешнем энергетическом уровне, а следовательно, тенденцией терять эти электроны. Они обладают только восста­новительными свойствами и не образуют элементарных отрица­тельных ионов. Элементы, атомы которых на внешнем энерге­тическом уровне содержат более трех электронов, обладают определенным сродством к электрону, а следовательно, приобре­тают отрицательную степень окисления и даже образуют элеме­нтарные отрицательные ионы. Таким образом, марганец, как и все металлы, обладает только восстановительными свойствами, тогда как для брома, проявляющего слабые восстановительные свой­ства, более свойственны окислительные функции.

Общей законо­мерностью для всех групп, содержащих p- и d-элементы, является преобладание металлических свойств у d-элементов. Следо­вательно, металлические свойства у марганца сильнее выражены, чем у брома.

Пример 3. Как зависят кислотно-основные свойства оксидов и гидроксидов от степени окисления образующих их атомов? Какие гидроксиды называются амфотерными (амфолитами)?

Решение. Если данный элемент проявляет переменную степень окисления и образует несколько оксидов и гидроксидов, то с увеличением степени окисления свойства последних меняются от основных к амфотерным и кислотным. Это объясняется характером электролитической диссоциации (ионизации) гидрок­сидов ЭОН, которая в зависимости от сравнительной прочности и полярности связей Э-O и O-Н может протекать по двум направлениям:

Э – О – Н

ЭОН Э+ + ОН

 

ЭОН ЭО + Н +

Полярность связей, в свою очередь, определяется разностью электроотрицательностей компонентов, размерами и эффективными зарядами атомов. Диссоциация по кислородному типу (II) протекает, если Ео-н « Еэ-о (высокая степень окисления), а по основному типу, если Ео-н >> Еэ-о (низкая степень окисления). Если прочность связей O-Н и Э-O близки или равны, то диссоциация гидроксида может одновременно протекать и по (I), и по (II) направлениям. В этом случае речь идет об амфотерных электролитах (амфолитах):

 

Эn+ + nОН ↔ Э(ОН)n = НnЭОn ↔ nН+ + ЭОn n

как основание как кислота

где: Э – элемент;

n – его положительная степень окисления.

В кислой среде амфолит проявляет основной характер, а в щелочной среде – кислотный характер:

Ca(OH)3 + 3HCl = CaCl3 + 3H2O

Ca(OH)3 + 3NaOH = Na3CaO3 + 3H2O

Пример 4. Изотоп 101-го элемента — менделевия (256) был получен бомбардировкой -частицами ядер атомов эйнштейния (253). Составьте уравнение этой ядерной реакции и напишите его в сокращенной форме.

Решение. Превращение атомных ядер обусловливается их взаимодействием с элементарными частицами или друг с другом. Ядерные реакции связаны с изменением состава ядер атомов химических элементов. С помощью ядерных реакций можно из атомов одних элементов получить атомы других.

Превращение атомных ядер как при естественной, так и при искусственной радиоактивности записывают в виде уравнений ядерных реакций. При этом следует помнить, что суммы массовых чисел (цифры, стоящие у символа элдмента вверху слева) и алгебраические суммы зарядов (цифры, стоящие у символа элемента внизу слева) частиц в левой и правой частях равенства должны быть равны. Данную ядерную реакцию выражают уравнением:

Часто применяют сокращенную форму записи. Для приведенной реакции она имеет вид: 253Es (, n)256Md. В скобках пишут бомбардирующую частицу, а через запятую — частицу, образующуюся при данном процессе. В сокращенных уравнениях частицы обозначают соответственно , p, d, п.

Пример 5. Исходя из сокращенных уравнений ядерных реакций (табл. 2), напишите их полные уравнения.

Решение. Ответ на вопрос см. в табл. 12.

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВЫ НЕОРГАНИЧЕСКОЙ ХИМИИ

ОСНОВЫ... НЕОРГАНИЧЕСКОЙ ХИМИИ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Степени окисления мышьяка, селена, брома

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные законы и понятия химии
Раздел химии, рассматривающий количественный состав веществ и количественные соотношения (массовые, объемные) между реагирующими веществами, называется стехиометрией. В соответствии с этим,

Химическая символика
Современные символы химических элементов были введены в 1813 г. Берцелиусом. Элементы обозначаются начальными буквами их латинских названий. Например, кислород (Oxygenium) обозначается буквой О, се

Латинские корни некоторых элементов
  Порядковый номер в таблице периодической системы Символ Русское название Латинский корень

Групповые названия элементов
  Название группы элементов Элементы группы Благородные газы He, Ne, Ar, Kr, Xe, Rn Галогены

Названия наиболее часто употребляемых кислот и кислотных остатков
Формулы кислоты Название кислоты Формула кислотного остатка Название кислотного остатка Кислородные кислоты

Получение кислот
1 . Взаимодействие кислотных оксидов (большинства) с водой: SO3 + Н2О=H2SO4; N2O5 + Н2

Номенклатура неорганических соединений (по правилам ИЮПАК)
ИЮПАК – международный союз теоретической и прикладной химии. Правила ИЮПАК 1970 г. являются международной моделью, по которой создаются номенклатурные правила для химических соединений на языке соо

Первые модели атома
В 1897 г. Дж. Томсон (Англия) открыл электрон, а в 1909г. Р. Малликен определил его заряд, который равен 1,6 · 10-19 Кл. Масса электрона составляет 9,11 · 10-28 г. В

Атомные спектры
  При нагреве вещество испускает лучи (излучение). Если излучение имеет одну длину волны, то оно называется монохроматическим. В большинстве же случаев излучение характеризуется неско

Кванты и модель Бора
В 1900 г. М. Планк (Германия) высказал предположение, что вещества поглощают и испускают энергию дискретными порциями, названными им квантами. Энергия кванта Е пропорциональна частоте излучения (ко

Двойственная природа электрона
В 1905 г. А. Эйнштейн предсказал, что любое излучение представляет собой поток квантов энергии, называемых фотонами. Из теории Эйнштейна следует, что свет имеет двойственную (корпускулярно-волновую

Энергетические подуровни
  Орбитальное квантовое число l Форма электронного облака в подуровне Изменение энергии элект-ронов в преде-лах уровня

Значения квантовых чисел и максимальное число электронов на квантовых уровнях и подуровнях
Квантовый Магнитное квантовое число ml Число кванто-вых состояний (орбиталей) Максимальное число электронов  

Изотопы водорода
Изотоп Заряд ядра (порядковый номер) Число элект-ронов Атомная масса Число нейтронов N=A-Z Протий

Периодическая система элементов Д.И. Менделеева и электронная структура атомов
Рассмотрим связь между положением элемента в периодической системе и электронным строением его атомов. У каждого последую­щего элемента периодической системы на один электрон больше, чем у предыдущ

Электронные конфигурации элементов первых двух периодов
Атом-ный номер Элемент Электрон-ные кон-фигурации Атом-ный номер Элемент Электрон-ные кон-фигурации

Электронные конфигурации элементов
Пе-риод Поряд-ковый номер Эле-мент Элект-ронная конфи-гурация Пе-риод Поряд-ковый номер Эле-мент

Периодические свойства элементов
Так как электронное строение элементов изменяется периодиче­ски, то соответственно периодически изменяются и свойства элемен­тов, определяемые их электронным строением, такие как энергия ионизации,

Электроотрицательность элементов по Полингу
Н 2,1                 &

Сокращенные и полные уравнения ядерных реакций
Сокращенные уравнения   Полные уравнения   27Al(p,

Определение химической связи
Свойства веществ зависят от их состава, строения, от типа химической связи между атомами в веществе. Химическая связь имеет электрическую природу. Под химической связью понимают вид

Ионная связь
При образовании любой молекулы, атомы этой молекулы «связываются» друг с другом. Причина образования молекул состоит в том, что между атомами в молекуле действуют электро­статические силы. Образова

Ковалентная связь
Химическая связь, осуществляемая за счет перекрывания элек­тронных облаков взаимодействующих атомов, называется кова­лентной связью.   4.3.1. Неполярная ковале

Метод валентных связей (МВС, ВС)
Для глубокого понимания сущности ковалентной связи, характера распределения электронной плотности в молекуле, принципов построения молекул простых и сложных веществ необходим метод валентных связей

Метод молекулярных орбиталей (ММО, МО)
Хронологически метод МО появился позже метода ВС, по­скольку оставались в теории ковалентной связи вопросы, кото­рые не могли получить объяснение методом ВС. Укажем некото­рые из них. Как

Основные положения ММО, МО.
1. В молекуле все электроны являются общими. Сама молекула — это единое целое, совокупность ядер и электронов. 2. В молекуле каждому электрону соответствует молекулярная орбиталь, подобно

Гибридизация орбиталей и пространственная конфигурация молекул
Тип молекулы   Исходные орбитали атома А   Тип гибридизации   Число гиб-ридных ор-биталей атома А   Пр

Металлическая связь
Само название говорит, что речь пойдет о внутренней структуре металлов. Атомы большинства металлов на внешнем энергетиче­ском уровне содержат небольшое число электронов. Так, по одному электрону со

Водородная связь
Водородная связь — это своеобразная химическая связь. Она возникает между молекулами, в состав которых входит водород и сильно электроотрицательный элемент. Такими элементами являют­ся фтор, кислор

Взаимодействия между молекулами
При сближении молекул появляется притяжение, что обусловли­вает возникновение конденсированного состояния вещества. К основ­ным видам взаимодействия молекул следует отнести вандерваальсовы силы, во

Вклад отдельных составляющих в энергию межмолекулярного взаимодействия
  Ве-щест-во Элект-ричес-кий момент диполя, D Поля-ризуе-мость, м3∙1030 Энергия взаимодействия, кДж/м

Общие понятия
При протекании химических реакций изменяет­ся энергетическое состояние системы, в которой идет эта реакция. Состояние системы характеризуется термодинами-ческими парамет­рами (р, Т, с и др.)

Внутренняя энергия. Первый закон термодинамики
При химических реакциях происходят глубокие качественные изменения в системе, рвутся связи в исходных веществах и возникают новые связи в конечных продуктах. Эти изменения сопровождаются поглощение

Энтальпия системы. Тепловые эффекты химических реакций
Теплота Q и работа A функциями состояния не являются, ибо они служат формами передачи энергии и связаны с процессом, а не с состоянием системы. При химических реакциях А — это работа против внешнег

Термохимические расчеты
Термохимические расчеты основаны на законе Гесса, позволяющее рассчитать энтальпию химической реакции: тепловой эффект реакции зависит только от природы и физического состояния исходных веществ

Стандартные теплоты (энтальпии) образования
некоторых веществ Вещест-во  

Химическое сродство. Энтропия химических реакций. Энергия Гиббса
Самопроизвольно могут протекать реакции, сопровождаю­щиеся не только выделением, но и поглощением теплоты. Реакция, идущая при данной температуре с выделением теплоты, при другой температу

Второй и третий законы термодинамики
Для систем, которые не обмениваются с окружающей средой ни энергией, ни веществом (изолированные системы), второй закон термодинамики имеет следующую формулировку: в изолированных системах са­мо

Понятие о скорости химических реакций
Скоростью химической реакции называется число элементарных актов реакции, происходящих в единицу времени в единице объема (в случае гомогенных реакций) или на единице поверхности раздела фаз (в

Зависимость скорости реакции от концентрации реагентов
Чтобы атом и молекулы смогли вступить в реакцию, необходимо их столкновение друг с другом, так как силы химического взаимодействия действуют только на очень малом расстоянии. Чем больше молекул реа

Влияние температуры на скорость реакции
Зависимость скорости реакции от температуры определя-ется правилом Вант-Гоффа, согласно которому при повыше-нии температуры на каждые 10 градусов скорость большин-ства реакций увеличивается в 2-

Энергия активации
Быстрое изменение скорости реакции с изменением температуры объясняет теория активации. Почему нагревание вызывает столь значительное ускорение химических превращений? Для ответа на этот вопрос нуж

Понятие о катализе и катализаторах
Катализом называется изменение скорости химических реакций в присутствии веществ – катализаторов. Катализаторы – это вещества, изменяющие скорость реакции за счет участия в промежуточном хим

Химическое равновесие. Принцип Ле Шателье
Реакции, которые протекают в одном направлении и идут до конца, называются необратимыми. Их не так много. Большинство реакций являются обратимыми, т.е. они протекают в противоположных направ

Способы выражения концентрации растворов
Концентрацией раствора называется содержание раство­ренного вещества в определенной массе или известном объеме раствора или растворителя. Различают массовую, молярную (мольно-объемную), мо

Коллигативные свойства растворов
Коллигативными являются свойства растворов, которые зависят от концентрации и практически не зависят от природы растворенных веществ. Они также называются общими (коллективными). Т

Растворы электролитов
Примерами растворов электролитов могут служить растворы щелочей, солей и неорганических кислот в воде, растворы ряда солей и жидком аммиаке и некоторых органических растворителях, например ацетонит

В растворах при 298 К
Концентрация, моль/1000г Н2О Коэффициент активности для электролитов NaCl KCl NaOH KOH

Гидролиз солей
Химическое обменное взаимодействие ионов растворен-ной соли с водой, приводящее к образованию слабодисcоци-ирующих продуктов (молекул слабых кислот или оснований, анионов кислых или катионов основн

Константы и степени диссоциации некоторых слабых электролитов
Электролиты Формула Численные значе-ния констант диссоциации Степень диссо-циации в 0,1 н. растворе, % Азотистая кислот

Процессы
Окислительно-восстановительными называют реакции, сопровождающиеся изменением степени окисления атомов, входящих в состав реагирующих веществ[2].  

Валентности и степени окисления атомов в некоторых соединениях
Моле-кула Ион-ность связи, % Атом Кова-лент-ность Электро-валент-ность Валент-ность: v = ve

Окислительно-восстановительные реакции
Рассмотрим основные положения теории окислительно-восстановительных реакций. 1. Окислением называют процесс отдачи электронов атомом, молекулой или ионом. Степень окисления при этом

Важнейшие восстановители и окислители
Восстановители Окислители Металлы, водород, уголь Оксид углерода (II) СО Сероводород H2S, сульфид натрия Na2S, оксид се

Составление уравнений окислительно-восстановительных реакций
Для составления уравнений окислительно-восстанови-тельных реакций и определения коэффициентов применяют два метода: метод электронного баланса и ионно-электронный метод (метод полуреакций).

Определение комплексных соединений
  Такие соединения, как оксиды, кислоты, основания, соли образованы из атомов в результате возникновения между ними химической связи. Это соединения обычные, или соединения первого по

Лиганды
К числу лигандов относятся простые анионы, та­кие как F-, СI-, Вr-, I-, S2-, сложные анионы, например CN– , NCS – , NO

Номенклатура комплексных соединений
Название комплекс­ного катиона записывается одним словом, начинающимся с названия отрицательного лиганда с прибавлением буквы «о», затем приводятся нейтральные молекулы и центральный атом с указани

Диссоциация комплексных соединений
Комплексные соединения — неэлектролиты в водных растворах диссоциации не подвергаются. У них отсутствует внешняя сфера комплекса, например: [Zn(NH3)2Cl2], [Co(NH

Константы устойчивости комплексов
Для характеристики устойчивости (прочности) комплексного иона применяют также величину, обратную константе нестойкости. Ее называют константой устойчивости (КУСТ)

Роль комплексных соединений
Комплексные соединения широко распро­странены в природе. В состав многих растений и живых организмов входят соединения с макроциклическими лигандами. В упрощенном виде тетрадентантный макроцикл пор

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги