рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

МЕТОДЫ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ТИТРОВАНИЯ

МЕТОДЫ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ТИТРОВАНИЯ - раздел Химия, СБОРНИК ЗАДАЧ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО АНАЛИТИЧЕСКОЙ ХИМИИ Общая Характеристика Методов Методы Окислительно-Восстановительного Т...


Общая характеристика методов
Методы окислительно-восстановительного титрования основаны на использовании окислительно-восстановительных реакций (ОВР). Аналитические возможности методов позволяют проводить определение окислителей, восстановителей и веществ, которые сами не проявляют окислительно-восстановительных свойств, но реагируют с окислителями и восстановителями с образованием осадков или комплексных соединений.
Рабочими растворами служат растворы окислителей (окислительное титрование) и восстановителей (восстановительное титрование). Поскольку рабочие растворы восстановителей неустойчивы из-за окисления на воздухе, то восстановительное титрование используют реже. В большинстве случаев готовят рабочие растворы с концентрацией 0,05 моль экв/ л. Почти все они являются вторичными стандартами.
Аналитические характеристики методов близки к характеристикам кислотно-основного титрования, но на анализ часто затрачивается больше времени из-за меньших скоростей окислительно-восстановительных реакций.
Классификация методов основана на применяемых рабочих растворах. Например, перманганатометрия (КМnО4), иодометрия (I2), дихроматометрия (K2Cr2O7), броматометрия (КВгОз) и т. д.
Требования к окислительно-восстановительным рeакциям (ОВР) в титриметрии
Известно более 100 тыс. ОВР. по далеко не все из них подходят для титрования из-за своих особенностей:
а) ОВР это наиболее сложный по механизму тип химических реакций;
б) они не всегда протекают в точном соответствии с суммарным уравнением реакции; в) часто образуются нестойкие промежуточные соединения.
Поэтому ОВР, которая используется для титрования, должна отвечать всем требованиям, обязательным для реакций в титриметрии, а именно:
1) она должна протекать в соответствии со стехиометрическим уравнением реакции. Многие ОВР идут нестехиометрично. Например, реакция

5Fe2+ + MnO4- + 8H+ = 5Fe3+ + Mn2+ + 4H2O

протекает в соответствии с уравнением только в присутствии H2SO4. Если для создания необходимой среды использовать другие кислоты (НC1,НNO3), то будут протекать побочные реакции;
2) ОВР должна протекать до конца. Если проводить титрование с погрешностью
< 0.1 %, то должно выполняться условие: lgK>3(n1 + n2), где n1 и n2 - число электронов, участвующих в полурeакциях; К константа равновесия ОВР. Константа равновесия ОВР связана со стандартной ЭДС элемента E0 , равной разности стандартных потенциалов окислителя и восстановителя следующим уравнением:

RT. lnK = E0nF,

где n – число электронов передаваемых от восстановителя к окислителю F – постоянная Фарадея, равная 96500 Кл/моль. В стандартных условиях уравнение приобретает вид:

lgK =

Например, для реакции окисления двухвалентного железа перманганатом калия:

lgK = тогда К = 1062

Большое числовое значение константы равновесия показывает, что равновесие реакции, протекающей при титровании, практически целиком сдвинуто вправо;
3) она должна идти быстро. Многие ОВР идут медленно, поэтому их нельзя использовать для титрования. Иногда для увеличения скорости нагревают раствор или вводят катализатор.
Способы титрования. Если реакция соответствует всем требованиям и есть возможность зафиксировать к. т. т., то используют прямое титрование. Если реакция идет нестехиометрично, медленно, то применяют обратное титрование и титрование заместителя.


8.1 Расчет фактора и числа эквивалентности веществ, участвующих в ОВР


Обычно необходимо определить, какая доля частицы эквивалентна одному электрону в полуреакции. Например, факторы эквивалентности перманганата и тиосульфата в конкретных реакциях равны:
МnО4- + 8Н+ + 5е- = Мn2+ + Н2О; fэкв.(KMnO4) =1/5, z = 5
МnО4- + 4Н+ + Зе- =МnО2 +2Н2О; fэкв.(KMnO4) = 1/3, z = 3

МnО4-- = МnО42-; fэкв.(КМnО4) = 1, z = 1

2S2О3 -2e- = S4O62- ; fэкв.(S2O3-2) = 1, z = 1.
Однако встречаются и более сложные случаи расчета fэкв. вещества, участвующего в ОВР, если проводят титрование по остатку, титрование заместителя, многостадийный анализ или титрование с участием органического вещества. В этих случаях проще всего рассчитать fэкв. определяемого вещества по пропорции, исходя из стехиометрии реакции и fэкв. наиболее «надежного» вещества, участвующего в ней. Если анализ многостадийный, то подобный расчет начинают с последней реакции, поскольку именно она проводится при титровании.


8.2 Кривые окислительно-восстановительного титрования


Кривые метода строятся в системе координат "потенциал - объем титранта (степень оттитрованности)" и имеют S-образный вид. Если титруют раствором окислителя, то получается восходящая кривая, если раствором восстановителя - нисходящая.
Расчет потенциала на различных этапах титрования проводят следующим образом.
1. До начала титрования потенциал рассчитать невозможно, так как в растворе еще нет окислительно-восстановительной пары, поэтому нельзя применить уравнение Нернста.
2. До т.э. потенциал Е рассчитывают по уравнению Нернста для окислительно-восстановительной пары определяемого вещества, так как оно находится в избытке и имеется некоторое количество как окисленной, так и восстановленной формы: Е = Е0 + (0,059/n1) . lg ([Ox]/[Red]), где Е0 это стандартный электродный потенциал пары окисленной и восстановленной формы титруемого вещества n1 - количество электронов переходящее от восстановленной к окисленной форме определяемого вещества, lg [Ox]/[Red]) - логарифм отношения концентраций окисленной и восстановленной форм этого вещества. Например при титровании сульфата железа (II) раствором перманганата калия (рис.6) потенциал до т.э. рассчитывается для полурекции: Fe2+ - e- = Fe3+
.
3. В т.э. потенциал рассчитывают по формуле: Е =(n1 . E01 + n2 . E02)/(n1 + n2), где E01 и E02 - стандартные электродные потенциалы пар окислителя и восстановителя реакции титрования, а n1 и n2 - число электронов в полуреакциях.
Если в реакции участвуют ионы Н+, то расчет ведут по формуле: Е =(n1. E01 + n2 . E02)/(n1 + n2) + 0,059/(n1 + n2) . lg [H+]m, где m - стехиометрический коэффициент при Н+ в суммарном уравнении реакции.

4. После т. э. потенциал рассчитывают по уравнению Hepнста для той окислительно-восстановительной пары, в состав которой входит титрант, так как она находится в избытке и в растворе имеется некоторое количество как окисленной, так и восстановленной формы. Например, для полуреакции:

МnО4- +8Н+ + 5е- = Мn2+ + 4Н2О потенциал рассчитывается по формуле:

В таблице 3. приведены данные изменения окислительно-восстановительного потенциала при титровании 100 мл 0,1 н раствора FeSO4 0,1 н раствором KMnO4 при С(Н+) = 1 моль/л

 

Таблица 3. Данные изменения окислительно-восстановительного потенциала при титровании 100 мл 0,1 н раствора FeSO4 0,1 н раствором KMnO4 при С(Н+) = 1 моль/л

 

Добавле-но 0,1 н KMnO4, V мл [Fe3+] моль/л [Fe2+] моль/л Е, В Добав-лено 0,1 н KMnO4, V мл [KMnO4] моль/л [Mn2+] моль/л Е, В
1,0 10-3 0,099 0,65 100,1 2,0 . 10-5 0,02 1,47
50,0 0,05 0,05 0,77 101,0 2,0 . 10-4 0,02 1,49
91,0 0,091 0,009 0,83 110,0 2,0 . 10-3 0,02 1,50
99,0 0,099 10-3 0,89        
99,9 0,0999 10-4 0,95        
100,0 0,1 10-11 1,39        

 

На рис.6 представлена кривая титрования раствора FеSO4 раствором КМnО4 при [H+] = 1 моль/л (pH = 0), определяемая реакцией:

10FeSO4 + 2KMnO4 + 8H2SO4 = 5Fe2(SO4)3 + K2SO4 + 2MnSO4 +8H2O

 

_____

 

Рис.6. Кривая титрования раствора FеSO4 раствором КМnО4

при [H+] = 1 моль/л (pH = 0)

 

Факторы, влияющие на величину скачка.
Все факторы, влияющие на потенциал, влияют и на величину скачка:
а) природа титруемого вещества и титранта. Чем больше разность стандартных окислительно-восстановительных потенциалов пар титруемого вещества и титранта (DЕ0), тем больше скачок. При малом значении DЕ0 титрование невозможно. Для титрования с погрешностью < 0,1 % надо, чтобы DЕ0 > 0,35 В;
б) рН раствора. Если ионы Н+ или ОН- участвуют в полуреакции, то их концентрация входит и уравнение Нернста в степени, соответствующей стехиометрическому коэффициенту, поэтому величина скачка в таких случаях зависит от значения рН раствора; в) конкурирующие реакции комплексообразования или осаждения с участием окисленной или восстановленной формы. Скачок можно увеличить, если один из компонентов сопряженной окислительно-восстановительной пары связать в комплексное или малорастворимое соединение:
г) концентрация раствора. Если в реакции не участвуют ионы Н+ или ОН- и стехиометрические коэффициенты перед окисленной и восстановленной формами в полуреакции одинаковы, то величина скачка не зависит oт концентраций веществ, поскольку при разбавлении раствора отношение [Ок. формы]/[Вос. формы] останется постоянным. В других случаях разбавление влияет на величину скачка;

д) число электронов, участвующих в полуреакции. Чем больше число электронов, тем больше скачок;

е) температура. Чем больше температура, тем больше Е1 и Е2.
Допущения, которые делают при расчете кривых титрования
Если:
1) стехиометрические коэффициенты при окисленной и восстановленной формах равны;
2) в уравнение Нернста не входят [Н+] или [ОН-] (или они равны 1 моль/л);
3) не учитывается разбавление раствора при титровании,

то можно заменить [Ок. формы]/[Вос. формы] на отношение объемов.
Во всех остальных случаях надо:
а) задать объем реагента;
б) по общим формулам рассчитать молярные концентрации эквивалента неоттитрованного вещества, продуктов реакции, титранта;
в) перевести их в молярные концентрации и подставить в уравнение Нернста.


8.3 Способы фиксирования конечной точки титрования (к. т. т.)


В методах окислительно-восстановительного титрования применяются следующие способы фиксирования к. т. т.
1. Безындикаторное титрование. Применяется, когда окисленная и восстановленная формы рабочего раствора имеют различную окраску. Например. МnО4- (фиолетовый) Мn2+ (бесцветный), I2 (бурый) - I- (бесцветный), В этом случае небольшой избыток титранта после т. э. вызывает появление окраски раствора, и титрование прекращают. Этот способ нельзя использовать при титровании окрашенных растворов.
2. Применение специфических индикаторов. Специфические индикаторы — это вещества, которые образуют интенсивно окрашенные соединения с одним из компонентов окислительно-восстановительной пары. Часто в этой роли могут выступать реактивы для качественных реакций. Например, крахмал является специфическим индикатором на I2 (образуется соединение синего цвета), тиоцианат CNS- — на ионы Fe3+ (комплекс, красного цвета).
3. Применение необратимых индикаторов. Это индикаторы, которые необратимо окисляются или восстанавливаются избытком рабочего раствора в к. т. т. и при этом меняют свою окраску. Например, в броматометрии индикаторы метиловый оранжевый и метиловый красный применяются как необратимые. При титровании раствором КВrO3 образуется Вг2, который окисляет индикаторы с образованием бесцветных продуктов, поэтому в к. т. т. окраска раствора изменяется.
4. Применение окислительно-восстановительных индикаторов. Это органические соединения, которые о6ратимо меняют окраску в зависимости от потенциала системы (дифениламин, антраниловая кислота и др.). Они бывают одно- и двуцветными.
Требования к ним: окраска индикатора должна меняться быстро и обратимо, в узком интервале значений потенциала: окраска окисленной и восстановленной форм индикатора должна быть различной.
Механизм действия: индикатор может обратимо окисляться или восстанавливаться, при этом его окисленная и восстановленная формы имеют различную окраску. При изменении потенциала равновесие смещается в сторону образования той или иной формы индикатора, поэтому окраска раствора изменяется. Окисление или восстановление индикатора могут протекать при участиии и без участия ионов Н+.
Без участия ионов Н+:
окислительно-восстановительное равновесие:
Ind(ок.)+ne Ind(вос).
уравнение Нернста: E = Eo + (0,059/n) · lg[Ind (ox.)]/[Ind(red.)]
интервал перехода индикатора. Если подставить н уравнение Нернста отношение концентраций окисленной и восстановленной форм индикатора, равное 1/10 или 10/1, то после преобразований получим:
E1 = Eo + 0,059/n, E2 = Eo - 0,059/n, ∆EInd = E0 ± 0,059/n, где n - число электронов в реакции перехода окисленной формы индикатора в восстановленную.
Правило выбора окислительно-восстановительного индикатора. Интервал перехода индикатора должен лежать в пределах скачка на кривой титрования (или стандартный потенциал индикатора должен практически совпадать со значением потенциала в т. э.).
Из-за несовпадения стандартного потенциала индикатора со значением потенциала в т.э. возникает индикаторная ошибка титрования. Если при титровании окислителем раствор недотитрован, т.е. Е°Ind.ox /Ind.red < E°т.э. , то относительная ошибка (погрешность) титрования ПT равна:

где а = , f = VT /V0 степень оттитрованности.

Если при титровании окислителем раствор перетитрован, т.е. Е°Ind.ox /Ind.red > E°т.э., то относительная ошибка (погрешность) титрования ПT равна:

.

 

– Конец работы –

Эта тема принадлежит разделу:

СБОРНИК ЗАДАЧ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО АНАЛИТИЧЕСКОЙ ХИМИИ

Факультет экологической медицины... Кафедра биохимии и биофизики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: МЕТОДЫ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ТИТРОВАНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СБОРНИК ЗАДАЧ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО АНАЛИТИЧЕСКОЙ ХИМИИ
  Минск УДК 543(075.8) ББК 24.4   Рецензенты: Рекомендовано к изданию НМС МГЭУ им. А. Д. Сахарова (протокол № 7 от 2

Пырко А. Н.
Сборник задач и контрольные задания по аналитической химии / А. Н. Пырко. Мн. 2010. 140 с.     Сборник включает теоретические сведения основ аналитической химии

ЗАКОН ЭКВИВАЛЕНТОВ
Все расчеты в химии вообще и в аналитической в частности основаны на законе эквивалентов: Вещества реагируют между собой в эквивалентных количествах. Эквивалент - это реальная или у

Способы выражения концентрации растворов
Все расчеты в аналитической химии осуществляются с использованием различных выражений концентраций веществ. Определение количества вещества в растворе – это определение его концентрации в данном ра

Связь различных способов выражения концентрации растворов
Очевидно, что значение концентрации растворенного вещества в данном растворе зависит от способа ее выражения, причем, существует определенная зависимость величин концентраций. Например, если концен

Ионная сила и рН растворов
Большинство аналитических определений осуществляется в растворах, поэтому необходимо знать их основные свойства. Важным свойством раствора является его ионная сила, которая определяется как полусум

Расчет рН растворов разных электролитов
При определении концентрации кислот и оснований важное значение имеет расчет рН растворов. Можно выделить несколько видов кислотно-основных растворов: сильной кислоты или основания, слабой кислоты

Решение типовых задач
1. Определить число эквивалентности гидроксида кальция z1 и дигидрофосфата алюминия z2 в реакции: 9 Ca(OH)2 + 2Al(H2PO4)3 = 2Al(OH)

Задачи для самостоятельного решения
  1. К 100 мл 0,1 М раствора серной кислоты прибавили 100 мл 0,4 н раствора гидроксида натрия. Определить рН полученного раствора? Ответ: рН = 13. 2. К 100 мл 0,2 н

ГРАВИМЕТРИЧЕСКИЙ (ВЕСОВОЙ) МЕТОД АНАЛИЗА
Гравиметрический метод количественного анализа основан на точном измерении массы определяемого компонента, выделенного в свободном состоянии или в виде соединения определенного состава. Это ме

Общая характеристика метода
Гравиметрический метод широко используется для анализа различных объектов с высоким содержанием определяемого компонента. Достоинства метода: а) высокая точность (относительная погрешность

Решение типовых задач
1. При какой концентрации цианид-ионов кадмий (II) количественно осадится в виде Cd(CN)2? Решение: равновесие Cd(CN)2 = Cd2+ + 2CN- характеризуе

Задачи для самостоятельного решения
1. Выпадет ли осадок SrSO4, если к 0,01 М раствору SrCl2 прибавить равный объем насыщенного раствора сульфата кальция? ПР(CaSO4) = 4,9 .10-5,

Задачи для самостоятельного решения
  1. Сколько грамм NaОН необходимо взять чтобы приготовить 250 мл 0,1 н раствора? Ответ: 2,0 г. 2. Сколько грамм 90%-ной серной кислоты надо взять, чтобы приготовить

Реакции в титриметрическом анализе
Реакции, лежащие в основе титриметрических методов, должны удовлетворять ряду требований. Главными из них являются следующие: 1) реакция должна протекать с большой скоростью, иначе нельзя

Расчет концентрации веществ на различных участках кривых титрования
I. До начала титрования. В растворе находится определяемое вещество X с исходной концентрацией Со. 2. До т. э. количество неоттитрованного вещества X рассчитывают следующим образом: nэ

Общая характеристика метода
В основе метода лежит реакция передачи протона от титранта к определяемому веществу или наоборот: НА + В → НВ+ + А- кислота основание сопряженная кислота со

Правильно подобранным является индикатор, интервал перехода окраски которого, полностью входит в границы скачка на построенной кривой титрования
Ошибка титрования. При титровании слабой кислоты может возникнуть гидроксидная (рТ > рН т.э.) или кислотная, обусловленная наличием в растворе неоттитрованной кислоты (рТ < рН

Выбор индикатора титрования
1-я т. э. соответствует рН = 4,5. В этой области лежит интервал перехода метилового оранжевого (DрН = 3,5 - 4,5). 2-я т. э. соответствует рН = 9,21. В этой области происходит изменение окр

Решение типовых задач
1. а) Определить молярную массу эквивалента Na3PO4 при титровании стандартным раствором HCl с индикатором метиловым оранжевым. б) Определить молярную концентрацию экв

Задачи для самостоятельного решения
  1 Рассчитать рН и степень диссоциации 0,1 М раствора HNO2. Как изменятся эти величины при добавлении к раствору нитрита калия до концентрации 0,5 моль/л? Kд(HN

Перманганатометрия
Основой метода являются реакции окисления восстановителей раствором КМnО4 Основные химические полуреакции: а) в кислой среде (рН<4): МnО4- + 8H

Условия проведения и аналитические возможности метода
Титрование проводят при пониженной или при комнатной температуре, так как при нагревании улетучивается иод, уменьшается чувствительность индикаторной реакции. Титрование проводят в

Задачи для самостоятельного решения
  1. Определить фактор эквивалентности и молярную массу эквивалента окислителя и восстановителя в реакции: а) I2 + 2S2O32- = 2I

Общая характеристика метода
Метод является областью метода комплексометрии и основан на реакции образования прочных комплексов ионов металлов с комплексонами (комплексонатов). Комплексоны это полиаминополикарбоновые кисло

Кривые комплексонометрии и способы установления конечной точки титрования (к. т. т.)
При построении кривых титрования используют понятия условных констант устойчивости комплексонатов, условных концентраций определяемого металла и лиганда. Необходимость в этом обусловлена тем, что т

Условия проведения комплексонометрического титрования
1. Необходимо создать оптимальное значение рН. Нижняя граница оптимального для титрования значения рН определяется тем значением рН, при котором комплексонат еще достаточно устойчив. Верхняя границ

Решение типовых задач
1. Определить молярную концентрацию, рабочего раствора ЭДТА (комплексона III), если на титрование навески металлического цинка массой 0,0131 г, растворенного предварительно в кислоте, затратили 18,

Задачи для самостоятельного решения
1. Рассчитать равновесную концентрацию ионов кадмия в 0,1 М растворе [Cd(NH3)4]2+. β([Cd(NH3)4]2+ = 4 . 106

ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА
Электрохимические методы анализа основаны на изучении и использовании окислительно-восстановительных процессов, протекающих на поверхности электрода или в приэлектродном слое раствора электролит

Основные электрохимические методы
Потенциометрия. В потенциометрических методах измеряется разность потенциалов между индикаторным электродом и электродом сравнения в отсутствие тока в электрохимической цепи. В этих условиях

Решение типовых задач
1. Элемент состоит из водородного электрода, опущенного в кровь и каломельного электрода насыщенного раствором KCl, потенциал которо- го равен 0,25В. Определить рН и [Н+] крови п

Задачи для самостоятельного решения
1 Рассчитать окислительно-восстановительный потенциал системы Ag+/Ag0 в 0,1 М растворе AgNO3. Как изменится потенциал при прибавлении к раствору эквивалентного коли

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ
Хроматография – это способ разделения смеси веществ на отдельные компоненты, основанный на явлении адсорбции и десорбции вещества на поверхности разделяющей подвижную и неподвижную фазы.

СПЕКТРОСКОПИЯ
  Спектроскопические методы основаны на взаимодействии электромагнитного излучения с веществом, т.е. на определении характеристик поглощаемого, испускаемого или рассеянного излучения.

Поглощение в УФ- и видимой областях
Спектры поглощения в УФ- и видимой областях содержат как качественную, так и количественную информацию о поглощающем веществе. Последнее и позволяет использовать их в аналитической химии. Поглощени

Люминесценция
  Поглотив квант энергии электромагнитного излучения частица вещества переходит из основного, самого нижнего по энергии (S0) электронного состояния, в более высокое по энер

Инфракрасная (ИК) спектроскопия
Спектры поглощения в видимой и УФ-областях, о которых шла речь выше, возникают в результате электронных переходов в атомах и молекулах. Поглощение же в ИК-области обусловлено переходами между колеб

Ядерный магнитный резонанс (ЯМР)
Метод ЯМР основан на резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Это поглощение наблюдается в сильном магнитном поле, под действием которого энергетические уров

Масс-спектрометрия (МС)
Масс-спектрометрия – один из наиболее эффективных и широко применяющихся аналитических методов. Его отличают высокая селективность, чувствительность и точность. Принцип метода состоит в то

Химические сенсоры
Химические сенсоры являются удобным аналитическим инструментом, который представляет интерес для исследователей и практиков. Постоянное развитие исследований приводит к созданию новых сенсоров, рас

Решение типовых задач
1. Рассчитать молярную концентрацию тирозина в растворе, если известно, что плотность поглощения (D) электромагнитного излучения с длиной волны λмакс. = 275 нм такого раствора в кюв

Задачи для самостоятельного решения
1. Комплекс катиона алюминия с индикатором комплексонометрического титрования ксиленовым оранжевым имеет максимум в спектре поглощения в водном растворе при λмакс. = 540 нм. Определ

АНАЛИТИЧЕСКАЯ ПРОБА
Первой стадией методики анализа является отбор пробы. Погрешность, возникающую на стадии пробоотбора, часто вносят основной вклад в погрешность результата анализа.Аналитическая про

Отбор проб веществ разного агрегатного состояния
Газы: Используют вакуумные мерные колбы или бюретки с соответствующей запорной жидкостью а также контейнеры, а также контейнеры специальные, представляющие собой сосуды из нержавеющей стали, стекла

Получение лабораторной пробы
Генеральную пробу подвергают усреднению, которое подразумевает гомогенизацию и сокращение. Метод сокращения массы пробы - «квартование». Пробу высыпают на поверхность квадрата и делят по диагонали

Разложение пробы
Пробу необходимо перевести в физическую и химическую форму, приемлемую для анализа. Способы разложения пробы зависят от химического состава образца, природы определяемого образца, цели анализа и ис

Дополнение
  Основные математические формулы, знание которых необходимо для решения задач по аналитической химии: рХ = -lgX, при этом Х = 10-рХ = 10lgX; логарифм ч

Л И Т Е Р А Т У Р А
1. Васильев В.П. Аналитическая химия. Т.1. Титриметические и гравиметрический методы анализа. Москва: Дрофа, 2005. – 366 С. 2. Васильев В.П. Аналитическая химия. Т.2. Физико-химические мет

Стандартные электродные потенциалы окислительно-восстановительных систем
  окисленная форма количество электронов восстановленная форма Е0, В F2

Константы устойчивости комплексных соединений
  Комплексное соединение β lgβ Комплексное соединение β lgβ

Аналитическая химия
(Вопросы к сдаче зачета)   1. Аналитическая химия (аналитика) и химический анализ. Классификация методов аналитической химии. Понятие о химических, физически

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги