Семинар - раздел Химия, Рабочая тетрадь по биохимии Темы Реферативных Сообщений: • Инду...
|
Темы реферативных сообщений:
• Индукторы и ингибиторы мультиферментной системы цитохрома р -450
• Повреждение цитохрома р -450 в каталитическом цикле
• Образование свободнорадикальных форм, их повреждающее действие.
ПРИЛОЖЕНИЕ
МЕХАНИЗМЫ КЛЕТОЧНОЙ АНТИРАДИКАЛЬНОЙ ЗАЩИТЫ
Свободные активные радикалы в норме в клетке образуются постоянно. Так, в процессе метаболизма веществ в гладком эндоплазматическом ретикулуме флавопротеины, а в митохондриях окислительные энзимы цепи дыхательных ферментов, постоянно продуцируют некоторое количество супероксиданиона (02-*) и перекиси водорода (Н202). Однако содержание в клетке этих и других радикалов жестко контролируются широким спектром биохимических инструментов антирадикальной защиты, включая супероксиддисмутазу, каталазу, G-SH-пероксидазу, GSSG-редуктазу, b-каротин, аскорбиновую кислоту, восстановленный глутатион, мочевую кислоту. Отдельные элементы системы защиты действуют комплексно и потенцируют эффект друг друга. Они локализуются либо в гидрофобных, либо гидрофильных компартментах клеток (например, токоферол - липофилен, глутатион - гидрофилен).
Механизмы антирадикальной защиты включают как ферментативные, так и неферментативные процессы. Самым простьм примером некаталитического разрушения радикалов является их гидролиз, лежащий в основе нейтрализации многих водорастворимых продуктов, например, ацилгалидов, эпоксидов, карбокатионов, изоцианатов, эписульфониум-иона и т.д. Наиболее важной неферментативной реакцией "обезвреживания" радикалов является их взаимодействие с биологическими антиоксидантами, такими как витамин Е, глутатион, витамин С. В результате такого взаимодействия образуются нереакционноспособные вещества, прерывание каскад "наработки" свободных радикалов.
Гомеостаз в клетке поддерживается за счет равенства скоростей образования и связывания радикалов. В случае повреждения механизмов защиты клеток, либо активации процессов образования радикалов, превосходящих по интенсивности возможности защиты, или даже разрушающих эти механизмы, развивается поражение клетки. Так, интоксикация преимущественным пульмонотоксикантом паракватом приводит к некоторому снижению содержания глутатиона в печени. Предварительное связывание глутатиона диэтилмалеатом приводит к тому, что паракват приобретает свойства преимущественного гепатотоксиканта. Таким образом, резерв глутатиона в клетке имеет особое значение для обеспечения её антиоксидантной защиты.
Хотя глутатион может взаимодействовать с многочисленньми субстратами и неферментативно, наличие в тканях энзима глутатион-S-трансферазы (GST) значительно ускоряет течение процесса, повышает его эффективность. Множественность форм GST, их широкая субстратная специфичность, высокий уровень активности в различных тканях делают систему глутатионтрансфераз наиболее универсальной и значимой для связывания активных метаболитов.
Глутатион и селен-зависимые глутатионпероксидазы восстанавливают перекись водорода и другие гидроперекиси до менее токсичных алкоголей и воды. Глутатион-дисульфид, образующийся в ходе этой реакции, подвергается обратному восстановлению до глутатиона с помощью НАДФН-зависимой глутатионредуктазы. Активность глутатионредуктазы ингибируют изоцианат-содержащие продукты метаболизма нитрозомочевины.
Два других энзима, имеющих большое значение для детоксикации свободных радикалов, это супероксиддисмутаза (СОД) и каталаза. Первый из энзимов катализирует преобразование двух супероксидных радикалов в молекулу кислорода и перекись водорода. Обнаруживаемая во всех тканях СОД содержит в структуре активного центра ионы Си, Zn, Мп. Образующаяся перекись водорода разрушается с помощью каталазы или глутатионпероксидазного цикла.
Вопросы по теме:
• В чем состоит токсичность кислорода? Ответ : токсичность кислорода состоит в том, что он может не полностью восстанавливаться, образуя активные формы кислорода.
• Покажите в виде схем образование активных форм кислорода.
• Напишите схемы обезвреживания супероксидиона, пероксида. Укажите ферменты, кофакторы (если имеются), продукты реакций
Какова биологическая роль мультиферментной системы цитохрома Р450? Ответ: Цитохром Р450 представляет собой очень гидрофобный белок, локализованный внутри мембраны. Простетическая группа по типу гема протопорфирина IX содержит ион Fe3+ , играющего роль комплексообразователя. Простетическая группа помещается в гидрофобной полости, активном центре цитохрома Р450. Электронное поле Fe3+ в поле лигандов сильно искажено, что регистрируется необычным для него спектром поглощения в области 450 нм. Чем больше цитохрома Р450 содержится в мембране, тем в лучшем состоянии она находится. «Стареющие» мембраны содержат цитохром Р420 (неактивная форма).
4. Назовите основные молекулярные механизмы обезвреживания ксенобиотиков. Микросомальная система окисления представляет собой полиферментный комплекс зависимых от НАДФН·Н+ и НАДН·Н+ цепей переноса электронов. Общим звеном этих цепей является цитохром Р450. В состав этого комплекса входят: цитохром b5, НАДФН-цитохром Р450-редуктаза и НАДН-цитохром b5 -редуктаза.
НАДФН·Н+ и НАДН·Н+ являются донорами электронов для процессов гидроксилирования, осуществляемых цитохромами b5 и Р450. ФП1 и ФП2 являются переносчиками электронов, флавопротеинами. ФП1 представляет собой НАДФН-цитохром Р450-редуктазу, а ФП2 является НАДН-цитохром b5-редуктазой. С ФП1 и ФП2 возможен перенос электронов на цитохром С — основной компонент дыхательной цепи митохондрий. В результате осуществляется межмембранный перенос электронов. Несомненно, наиболее важной реакцией микросомального окисления является гидроксилирование, сущность которого заключается во внедрении одного атома активированного кислорода в окисляемое вещество, в то время как другой его атом идет на образование воды, т.е. гидроксилирование протекает по монооксигеназному типу.
Превращение атомов кислорода в молекулу воды и гидроксильную группу окисляемого субстрата осуществляет цитохром Р450. Таким образом, в печени и ряде других органов при функционировании микросомальных монооксигеназ из гидрофобных ксенобиотиков образуются полярные соединения, имеющие реактивные группы. Эти соединения могут быть как менее, так и более токсичными, нежели исходные соединения, но они благодаря приобретенным реактивным группам легко вступают в реакции конъюгации с образованием нетоксичных (не всегда) продуктов, легко выводимых из организма с мочой, желчью и калом.
ВТОРАЯ ФАЗА МЕТАБОЛИЗМА КСЕНОБИОТИКОВ
Основные функции этой фазы те же, что и первой: увеличение гидрофильности и снижение токсичности ксенобиотиков. Наиболее важные ферменты второй фазы относятся к классу трансфераз.
Наиболее широка и многообразна активность семейства глутатионтрансфераз, метаболизируюших тысячи ксенобиотиков. Большинство этих ферментов находится в цитоплазме, но некоторые из них локализованы в мембранах ЭПС и митохондрий. Основная реакция - конъюгация
5.Сформулируйте значение монооксигеназных реакций цитохрома Р450 в метаболизме липофильных ксенобиотиков.
Изобразите в виде схемы последовательность реакций одноэлектронного восстановления кислорода и гидроксилирования субстрата в монооксигеназной реакции.
Ответ Существует несколько схем действия микросомальных монооксигеназ. Наиболее распространенной является схема обезвреживания, представленная на рисунке. Она хорошо раскрывает механизм биотрансформации химических веществ при участии цитохромов и флавопротеидов, иcпользуя в качестве доноров электронов НАДФН·Н+ и НАДН·Н+.
Основные ферменты, участвующие в метаболизме ксенобиотиков и локализованные в эндоплазматическом ретикулуме, представлены ниже на рисунке 1
– Конец работы –
Эта тема принадлежит разделу:
Челябинская государственная медицинская академия... Министерства здравоохранения Российской федерации... ГБОУ ВПО ЧелГМА Минздрава России...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Семинар
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов