рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Ядерные и цитоплазматические мутации

Ядерные и цитоплазматические мутации - раздел Биология, Вопрос 1. Предмет,задачи и методы генетики. Вопрос 2 . Наследственность и изменчивость - фундаментальные свойства живого, их диалектическое единство Ядерные Мутации — Геномные, Хромосомные, Точечные. Цитоплазмотически...

Ядерные мутации — геномные, хромосомные, точечные.

Цитоплазмотические мутации — связанные с мутациями неядерных генов находящихся в митохондриальной ДНК и ДНК пластид — хлоропластов.

Искусственный мутагенез широко используют для изучения белков и улучшения их свойств

Канцерогене́з (лат. cancerogenesis; cancer — рак + др.-греч. γένεσις — зарождение, развитие) — сложный патофизиологический процесс зарождения и развития опухоли. (син. онкогенез).

На данный момент известно большое количество факторов, способствующих канцерогенезу:

Химические факторы

Вещества ароматической природы (полициклические и гетероциклические ароматические углеводороды, ароматические амины), некоторые металлы и пластмассы обладают выраженным канцерогенным свойством благодаря их способности реагировать с ДНК клеток, нарушая ее структуру (мутагенная активность). Канцерогенные вещества в больших количествах содержатся в продуктах горения автомобильного и авиационного топлива, в табачных смолах. При длительном контакте организма человека с этими веществами могут возникнуть такие заболевания, как рак легкого, рак толстого кишечника и др. Известны также эндогенные химические канцерогены (ароматические производные аминокислоты триптофана), вызывающие гормонально зависящие опухоли половых органов.

Физические факторы

Солнечная радиация (в первую очередь ультрафиолетовое излучение) и ионизирующее излучение также обладает высокой мутагенной активностью. Так, после аварии Чернобыльской АЭС отмечено резкое увеличение заболеваемости раком щитовидной железы у людей, проживающих в зараженной зоне. Длительное механическое или термическое раздражение тканей также является фактором повышенного риска возникновения опухолей слизистых оболочек и кожи (рак слизистой рта, рак кожи, рак пищевода).

Биологические факторы

Доказана канцерогенная активность вируса папиломы человека в развитии рака шейки матки [2], вируса гепатита В в развитии рака печени, ВИЧ — в развитии саркомы Капоши. Попадая в организм человека, вирусы активно взаимодействуют с его ДНК, что в некоторых случаях вызывает трансформацию собственных протоонкогенов человека в онкогены. Геном некоторых вирусов (ретровирусы) содержит высоко активные онкогены, активирующиеся после включения ДНК вируса в ДНК клеток человека.

Наследственная предрасположенность

Изучено более 200 наследственных заболеваний, характеризующихся повышенным риском возникновения опухолей различной локализации. Развитие некоторых типов опухолей связывают с врожденным дефектом системы репарации ДНК (пигментная ксеродерма).

Опасность загрязнения окружающей среды мутагенами состоит в том, что большинство вновь возникающих мутаций, не прошедших шлифовку эволюцией, отрицательно влияют на жизнеспособность всего живого на земле. В случае поражения зародышевых клеток последствия выражаются в возрастании частоты носительства мутагенных генов или хромосом, т.е. в увеличении объема мутационного груза популяции. При повреждении соматических клеток возможно возрастание частоты злокачественных новообразований.

В городах, атмосферный воздух которых насыщен химическими мутагенами, число детей с диагностированными генными дефектами в 3...5 раз превышает распространенность хромосомных заболеваний.

С загрязнением окружающей среды связывают увеличение частоты бесплодных браков, самопроизвольных абортов, особенно в ранние сроки беременности (до 12 нед), мертворождений и врожденных пороков развития. Это наносит большой ущерб здоровью населения, поскольку, с одной стороны, снижается рождаемость, с другой — повышается число больных детей с физическими или интеллектуальными дефектами, которые впоследствии нуждаются в социальной поддержке государства. Около трети случаев детской инвалидности, заболеваемости и смертности обусловлены врожденными пороками развития, которые занимают 2—3 места в структуре перинатальной заболеваемости и смертности.

Несмотря на очевидность мутагенной активности загрязнителей природной среды, эта проблема все еще изучается, поскольку чистого моновоздействия на организм практически не встречается. Повреждения генетического аппарата человека могут быть вызваны не только экологическими факторами, но и факторами риска социальной природы; существует также большой перечень наследственных болезней, эволюционно передающихся из поколения в поколение. Именно поэтому для оценки интенсивности мутагенной активности объектов природной среды особо значима информация не вообще о нарушениях репродуктивной функции населения, а лишь о тех эффектах, которые можно связать с воздействием физических или химических мутагенов.

Информационно значимы для экологического фактора риска прежде всего врожденные пороки развития, проявляющиеся уже в первом поколении. В частности, к ним относят скелетные пороки диспластической природы: синдактилия (сращение пальцев), полидактилия (лишние пальцы), редукционные пороки конечностей (их укорочение), гидроцефалия. Среди врожденных пороков костно-мышечной системы часто встречаются дисплазии тазобедренного сустава и врожденная деформация стоп (косолапость). Совокупное взаимодействие факторов риска экзо- и эндогенного характера может приводить к множественным порокам развития, уровень которых непрерывно возрастает.

Вопрос 31. Закон гомологических рядов наследственной изменчивости Н.И Вавилова.

Гомологические ряды в наследственной изменчивости — понятие, введенное Н. И. Вавиловым[1] при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений.

 

Закон гомологичных рядов: Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Закономерности в полиморфизме у растений, установленные путем детального изучения изменчивости различных родов и семейств, можно условно до некоторой степени сравнить с гомологическими рядами органической химии, например с углеводородами (CH4, C2H6, C3H8…).[2]

Суть явления состоит в том, что при изучении наследственной изменчивости у близких групп растений были обнаружены сходные аллельные формы, которые повторялись у разных видов (например, узлы соломины злаков с антоциановой окраской или без, колосья с остью или без и т. п.). Наличие такой повторяемости давало возможность предсказывать наличие ещё не обнаруженных аллелей, важных с точки зрения селекционной работы. Поиск растений с такими аллелями проводился в экспедициях в предполагаемые центры происхождения культурных растений. Следует помнить, что в те годы искусственная индукция мутагенеза химическими веществами или воздействием ионизирующих излучений ещё не была известна, и поиск необходимых аллелей приходилось производить в природных популяциях.

Н. И. Вавилов рассматривал сформулированный им закон как вклад в популярные в то время представления о закономерном характере изменчивости, лежащей в основе эволюционного процесса (например, теория номогенеза Л. С. Берга). Он полагал, что закономерно повторяющиеся в разных группах наследственные вариации лежат в основе эволюционных параллелизмов и явления мимикрии.

В 70-80-х годах XX века к закону гомологических рядов обратился в своих трудах Медников Б. М., написавший ряд работ, в которых показал, что именно такое объяснение возникновения сходных, часто до мелочей, признаков в родственных таксонах вполне состоятельно.

Родственные таксоны часто имеют родственные генетические последовательности, слабо различающиеся в принципе, а некоторые мутации возникают с большей вероятностью и проявляются в целом сходно у представителей разных, но родственных, таксонов. Как пример приводятся двувариантная фенотипически ярко выраженная мутация строения черепа и организма в целом: акромегалия и акромикрия, за которые отвечает в конечном счете мутация, изменяющая баланс, своевременное «включение» или «выключение» в ходе онтогенеза гормонов соматотропина и гонадотропина.

Вопрос 32. Биологические антимутационные механизмы. Понятие об антимутагенах.

Антимутационные механизмы: речь идет об особенностях функционирования ДНК — полимеразы, отбирающей требуемые нуклеотиды в процессе репликации ДНК, а также осуществляющей самокоррекцию при образовании новой цепи ДНК наряду с редактирующей экдонуклеазой.

 

Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллейных генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.

В снижение вредных последствий генных мутаций вносит явление экстракопирование генов, кодирующих жизненно важные макромолекулы. Пример, гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна.

Перечисленные механизмы способствуют сохранению отобранных в ходе эволюции генов и одновременно накоплению в генофонде популяции различных ей аллелей, формируя резерв наследственной изменчивости.

Антимутагены (от анти... и мутагены), вещества, понижающие частоту мутаций, препятствующие мутагенному действию химических или физических агентов. А. условно можно разбить на 3 группы:

1) блокирующие действие автомутагенов, естественно возникающих в клетках в процессе метаболизма (антиавтомутагены), например фермент каталаза, который разрушает обладающую мутагенным действием перекись водорода. Эти А. обеспечивают сохранение определённого уровня спонтанных мутаций;

2) снижающие действие внешних, искусственных физических (ионизующей радиации и др.) или химических мутагенов. Такими А. являются сульфгидрильные соединения, сильные восстановители типа Na2S2O, некоторые спирты и углекислые соли. А. этих двух групп могут разрушать мутагены или конкурировать с важными в генетическом отношении структурами за взаимодействие с мутагеном, действовать как восстановители и т. д.;

3) ферментные системы, действующие непосредственно на уровне наследственных структур, т. е. "исправляющие" поврежденные мутагеном участки хромосомы. Мутационный эффект может быть также снят физическим воздействиями определённой интенсивности (светом, высокой и низкой температурой и др.).

Вопрос 33.Человек как специфический объект генетического анализа. Методы изучения наследственности человека.

В отличие от классических объектов генетики, человек – специфический и сложный объект генетического анализа. Специфичность человека состоит в том, что она объединяет в себе законы органической эволюции и законы социальной жизни. Гибридологический метод, основу которого составляет система экспериментальных скрещиваний, для человека неприемлемый. Экспериментальные браки для человека невозможные. Генетические эксперименты на людях запрещенные. Существуют и другие особенности, которые создают трудность при изучении наследственности и побежалости человека.

Основные из них такие:

1. Медленное изменение поколений (приблизительно через 25-30 лет). Продолжительность жизни человека, как объекта наблюдений, может превышать продолжительность жизни исследователя.

2.Маленькое количество детей в каждой семье.

3. Сложный кариотип, который включает 46 хромосом (24 группы сцепления – 22 пары автосом, Х-, Y-хромосомы). Для сравнения – у дрозофили 8 хромосом (4 группы сцепления).

4. Человеку присущий значительный генотиповий полиморфизм, который, рядом с разными экологическими и социальными условиями, обуславливает высокую ступень фенотипичного полиморфизма.

 

К основным методам изучения наследственности человека относятся.

1. Клинико-генеалогический метод. Он был введен в конце XIX в. английским ученым Френсисом Гальтоном и основан на составлении и анализе родословных. В генетическую карту подробно записывают все сведения о человеке, который обратился за консультированием (в генетике его называют “пробанд”), составляется анамнез, так в медицине называется запись воспоминаний, связанных с историей болезни пациента, ее начало, последующее течение, выясняется возраст, в котором появились первые признаки заболевания. Затем собираются сведения о его пробанд. Существуют определенные опросники, анкеты, по которым работают врачи. Сбор такого материала длительный и трудоемкий процесс. В генеалогическом методе можно выделить два этапа: составление родословной и генеалогический анализ. При составлении родословной используются специальные символы графического изображения родословной (рис. 5).

2. Цитогенетический метод (цито – это клетка). Цитогенетическим методом под световым микроскопом, применяя специальные методики окрашивания, изучают хромосомы различных клеток человека. Материалом для цитогенетических исследований могут быть клетки периферической крови, например, лимфоциты, клетки кожи (фибробласты), клетки, полученные из амниотической жидкости плода и др. Медики изучают особенности кариотипа больного человека. Кариотип – это совокупность хромосом клетки. У человека 46 хромосом, 23 пары гомологичных хромосом. Если число хромосом меняется хотя бы на одну хромосому в сторону уменьшения или увеличения – это признак серьезного генетического заболевания. Каждая пара хромосом человека имеет определенную форму, характеризуется расположением центромеры, окраской, длиной плеч. При различных заболеваниях эти внешние признаки строения хромосом могут меняться и служат критерием для постановки раннего диагноза заболевания. Это особенно важно, когда исследуются клетки, взятые из амниотической жидкости беременной женщины, что позволяет еще до рождения ребенка установить наследственную патологию и назначить нужное лечение.

Для окраски хромосом чаще всего используют краситель Романовского – Гимзы, 2%-ный ацеткармин или 2%-ный ацетарсеин (название красителей). Они окрашивают хромосомы целиком, равномерно и могут быть использованы для выявления численных аномалий хромосом человека (45, 47 и т.д.).

Для получения детальной картины структуры хромосом используют различные способы дифференциального окрашивания. В G-методе по длине хромосомы выявляется ряд окрашенных и неокрашенных полос. Чередование полос и их размеры строго индивидуальны и постоянны для каждой пары гомологичных хромосом, поэтому по дифференциальной окраске можно легко определить, к какой паре относится хромосома, если даже пары сходны между собой по размерам и форме. При различной патологии рисунок специфической исчерченности также меняется, что служит важным диагностическим критерием (рис. 6).

Много наследственных заболеваний сцеплены с половыми хромосомами. Половой хроматин определяют анализом эпителиальных клеток в соскобе слизистой оболочки щеки человека. У женщин вторая Х-хромосома обнаруживается в виде округлого характерного пятнышка в ядре клетки, ее называют тельцем Барра. Отсутствие тельца Барра у женщин свидетельствует о хромосомном заболевании – синдроме Шерешевского – Тернера.

3. Биохимические методы позволяют выявить изменения в обмене веществ, для уточнения диагноза заболевания. Заболевания, в основе которых лежат нарушения обмена веществ, составляют значительную часть наследственных заболеваний, так как изменения, которые происходят на уровне генов, не могут не повлечь за собой нарушения синтеза различных белков, принимающих важное участие в регуляции процессов жизнедеятельности.

4. Близнецовый метод позволяет оценить относительную роль среды и генетических факторов в развитии конкретного признака или заболевания. Особенно большой интерес для науки представляет изучение близнецовых пар однояйцовых, т.е. монозиготных близнецов, которые были разлучены в детстве и воспитывались в разных семьях, в разных условиях. Поскольку у таких людей набор хромосом полностью одинаков, на развитие конкретного признака или заболевания будут влиять именно различия в окружающей среде. Эти исследования показали, что далеко не все наследственные заболевания обязательно проявляются у конкретного человека, на их развитие большое влияние оказывает образ жизни самого человека, т.е. окружающая среда, например для таких наследственных болезней как сахарный диабет или шизофрения. Близнецовый метод применяется и для изучения дизиготных, разнояйцовых братьев и сестер, которые хотя и имеют различные генотипы, но при этом обладают большим сходством, так как несут гены одной супружеской пары.

5. Популяционно-генетический метод дает возможность рассчитать частоту нормальных и патологических генотипов в популяции: гетерозигот, гомозигот доминантных и рецессивных, а также частоту нормальных и патологических фенотипов. Это метод медицинской статистики. Следует помнить, что наследственные заболевания распределены по различным регионам земного шара, среди различных рас и народностей неравномерно. Знание частоты заболеваний в данном регионе способствует правильной организации профилактических мероприятий.

6. Методы пренатальной (внутриутробной, до рождения человека) диагностики представляют собой совокупность исследований, позволяющих обнаружить заболевание до рождения ребенка. К основным методам пренатальной диагностики относятся ультразвуковое обследование, биопсия (взятие небольшого кусочка ткани из органа или какой-либо части тела для микроскопического исследования), хориона (наружная оболочка плода) и многие другие.

7. Метод моделирования изучает болезни человека на животных, которые могут болеть этими заболеваниями. В основе лежит закон Вавилова о гомологичных рядах наследственной изменчивости, например, гемофилию, сцепленную с полом, можно изучать на собаках, эпилепсию – на кроликах, сахарный диабет, мышечную дистрофию – на крысах, незаращение губы и неба – на мышах.

8. Генетика соматических клеток изучает наследственность и изменчивость соматических клеток, т.е. клеток тела, не половых. Соматические клетки имеют весь набор генетической информации, на них можно изучать генетические особенности целостного организма.

Соматические клетки человека получают для генетических исследований из материала биопсий (прижизненное иссечение тканей или органов), когда для исследования берется небольшой кусочек ткани. Как правило, это делается во время операций, когда надо установить имеет ли данное образование, например, опухоль, злокачественную или доброкачественную природу.

В настоящее время применяют следующие методы генетики соматических клеток: простое культивирование, гибридизация, клонирование и селекция. Простое культивирование – это размножение клеток на питательных средах, чтобы получить их в достаточном количестве, для цитогенетического, биохимического, иммунологического и других методов.

При гибридизации соматических клеток можно скрещивать клетки, полученные от разных людей, а также клетки человека с клетками мыши, крысы, морской свинки, обезьяны и других животных. Такие исследования позволяют установить группы сцепления, а используя хромосомные перестройки выявлять последовательность расположения генов и строить генетические карты хромосом человека.

Клонирование – это получение потомства одной клетки (клона). Все клетки в результате клонирования будут одинакового генотипа.

Селекция – это отбор клеток с заранее заданными свойствами. Затем проводится выращивание и размножение этих клеток на специальных питательных средах. Например, можно использовать питательную среду без лактозы, но с добавлением других сахаров, и из большого числа клеток, помещенных в нее, могут оказаться несколько, способных жить в отсутствии лактозы. Потом из таких клеток получают клон.

Вопрос 34. Понятие о генных и хромосомных болезнях: механизмы,примеры,популяционная частота.

Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена.

Классификация

К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока еще нет единой классификации наследственных болезней обмена веществ.

Болезни аминокислотного обмена

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний — недостаточность того или иного фермента, ответственного за синтез аминокислот. К ним относится:

· фенилкетонурия - нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы;

· алкаптонурия - нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты;

· глазно-кожный альбинизм - обусловлен отсутствием синтеза фермента тирозиназы.

Нарушения обмена углеводов

· галактоземия - отсутствие фермента галактозо-1-фосфат-уридилтрансферазы и накопление в крови галактозы;

· гликогеновая болезнь - нарушение синтеза и распада гликогена.

Болезни, связанные с нарушением липидного обмена

· болезнь Гоше - накопление цереброзидов в клетках нервной и ретикуло-эндотелиальной системы, обусловленное дефицитом фермента глюкоцереброзидазы.

Наследственные болезни пуринового и пиримидинового обмена

· подагра;

Болезни нарушения обмена соединительной ткани

· синдром Марфана («паучьи пальцы», арахнодактилия) - поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина;

· мукополисахаридозы - группа заболеваний соединительной ткани, связанных с нарушеним обмена кислых гликозаминогликанов.

· Фибродисплазия - заболевание соединительной ткани,связанное с ее прогрессирующим окостенением в результате мутации в гене ACVR1

Наследственные нарушения циркулирующих белков

· гемоглобинопатии - наследственные нарушения синтеза гемоглобина. Выделяют количественные (структурные) и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции (серповидноклеточная анемия). При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей (талассемия).

Наследственные болезни обмена металлов

· болезнь Коновалова-Вильсона и др.

Синдромы нарушения всасывания в пищеварительном тракте

· муковисцидоз;

· непереносимость лактозы и др.

Механизмы развития наследственных болезней Наследственные болезни возникают вследствие изменения наследственного аппарата клетки (мутаций), которые вызываются лучевой, тепловой энергией, химическими веществами и биологическими факторами. Ряд мутаций вызывается генетическими рекомбинациями, несовершенством процессов репарации, возникает в результате ошибок биосинтеза белков и нуклеиновых кислот. Мутации затрагивают как соматические, так и половые клетки.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

· синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

· синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

· синдром Эдвардса — трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

· Синдром Шерешевского — Тёрнера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

· полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

· полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

· Синдром Клайнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

· триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

Нарушения структуры хромосом

· Транслокации — обменные перестройки между негомологичными хромосомами.

· Делеции — потери участка хромосомы. Например, синдром «кошачьего крика» связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

· Инверсии — повороты участка хромосомы на 180 градусов.

· Дупликации — удвоения участка хромосомы.

· Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

· Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

Вопрос 35.Болезни с нетрадиционным (неменделевским) типом наследования

В последние годы стало очевидным, что далеко не все случаи наследственной патологии у человека можно рассматривать как результат менделирующих генных мутаций, хромосомных аномалий или как мультифакториальные заболевания (МФЗ).

В настоящее время описано достаточно много заболеваний, которые в современной классификации наследственной патологии человека объединяют в отдельную группу: болезни с нетрадиционным типом наследования. Среди них различают: болезни импринтинга, митохондриальные болезни, болезни экспансии тринуклеотидных повторов с явлением антиципации и др.

Болезни импринтинга. Особенности наследования и фенотипического проявления при болезнях импринтинга обусловлены явлением геномного импринтинга (ГИ) (импринтинг от англ. imprinting — запечатление).

Явление геномного импринтинга связывают со специфическими изменениями хромосом или их участков во время образования мужских и женских гамет. Этим объясняется дифференциальная маркировка отцовских и материнских хромосом у потомков.

Точные механизмы дифференциальной маркировки хромосом или их участков в сперматогенезе или овогенезе пока окончательно не выяснены. Однако, немаловажная роль, вероятно, принадлежит процессам специфического метилирования цитозиновых оснований ДНК, выключающим транскрипцию гена.

Импринтированные участки в хромосомах определенного родительского происхождени (отцовских иди материнских) избирательно репрессируются у потомка. В связи с этим фенотипически проявляется только информация, полученная от другого родителя, т.е. имеет место моноаллельная экспрессия. Следовательно, фенотипическое проявление мутантного аллеля зависит от того с какой половой клеткой (яйцеклеткой или сперматозоидом) он был передан потомку.

Явлением ГИ объясняется, например, избирательная инактивация у млекопитающих отцовской Х-хромосомы в клетках провизорных органов (см. гл. 7.5.4.). В клетках самого зародыша имеет место равновероятная инактивация отцовской и материнской Х-хромосом (см. рис. 3.78).

Таким образом, следствием ГИ (дифференциальной маркировки в гаметогенезе родителей и последующей избирательной инактивации у потомков участков хромосом) является функциональная неравноценность в генотипе потомка аллелей разного родительского происхождения.

Митохондриальные болезни. Начиная с конца 80-х годов XX века получены убедительные доказательства связи некоторых видов наследственной патологии у человека с мутациями митохондриальной ДНК (см. гл. 4.1) В зависимости от типа мутаций митохондриальные болезни разделяют на 4 группы:

а) болезни, вызванные точковыми мутациями, приводящими к замене консервативных аминокислот в собственных белках митохондрий. К ним относятся пигментный ретинит и нейроофтальмопатия Лебера, при которой наступает двусторонняя потеря зрения. Выраженность клинических признаков у больных этими заболеваниями коррелирует с количеством мутантной мтДНК, которое у разных больных может варьировать от 5 до 100% всей мтДНК;

б) болезни, вызванные мутациями в генах т-РНК, приводящими к многочисленным дегенеративным заболеваниям с различной степенью тяжести клинических проявлений, коррелирующей с количеством мутантной мтДНК;

в) болезни вызванные делениями и дупликациями участков митохондриалъных генов. У человека описано тяжелое заболевание молодого и среднего возраста — отсроченная кардиопатия, при которой обнаружены делеции мтДНК кардиоцитов. Заболевание носит семейный характер. В ряде случаев предполагается Х-сцепленное наследование, что позволяет думать о существовании ядерного гена, мутация которого вызывает делению до 50% мтДНК кардиоцитов;

г) болезни, вызванные снижением числа копий мтДНК, что является следствием определенных мутаций. К данной группе относятся летальная инфантильная дыхательная недостаточность и синдром молочнокислого ацидоза, при которых число копий мтДНК снижается до 1—2% от нормы. Снижение содержания мтДНК в клетках различных органов приводит к развитию миопатий, нефропатий, печеночной недостаточности и т.д. вследствие ослабления синтеза белков, кодируемых мтДНК.

Изменения в ДНК митохондрий сопровождаются нарушением их функций, связанных с клеточным дыханием. Это определяет характер и степень тяжести клинических проявлений митохондриалъных болезней.

Выдвинута также гипотеза о том, что накопление спонтанно возникающих мутаций мтДНК является звеном механизмов старения и развития дегенеративных процессов у человека.

Болезни экспансии тринуклеотвдных повторов с явлением антиципации. Под генетической антиципацией (или упреждением) понимается более раннее проявление и возрастание тяжести симптомов наследственного заболевания в последующих поколениях родословной. Антиципация реально проявляется при определенных видах моногенной неврологической патологии, а также при некоторых мультифакториальных заболеваниях.

В начале 90-х годов XX века при исследовании ряда тяжелых неврологических заболеваний были обнаружены «динамические» мутации с экспансией (резким увеличением числа копий) тринуклеотидных повторов у индивидов в последующих поколениях родословной. Развивающиеся в результате таких мутаций наследственные заболевания характеризуются четко выраженным проявлением антиципации.

Феномен экспансии числа тринуклеотидных повторов был впервые обнаружен при исследовании синдрома Мартина—Белла или синдрома фрагильной (ломкой) Х-хромосомы, основным фенотипическим проявлением которого является умственная отсталость. Синдром ломкой Х-хромосомы характеризуется довольно широкой распространенностью в популяции (1:1000) и необычным характером наследования. Лишь у 80% мужчин-носителей мутантного локуса имеются клинические и цитогенетические признаки заболевания. 20% носителей как клинически, так и цитогенетически нормальны, но после передачи мутации всем своим дочерям они могут иметь пораженных внуков. Неэкспрессируемый мутантный ген в таком случае становится экс-прессируемым в последующих поколениях.

Таким образом мутантный ген при синдроме ломкой Х-хромосомы может существовать в двух формах, отличающихся по своей пенетрантности. Одна — фенотипически не проявляющаяся — премутация, которая при прохождении через женский мейоз превращается в другую форму — полную мутацию. При таком необычном способе наследования и фенотипического проявления мутантного гена, отличном от классического Х-сцепленного наследования, обнаруживается феномен антиципации — более тяжелое проявление заболевания в последующих поколениях.

В основе клинических проявлений и цитологической нестабильности в локусе, ответственном за синдром ломкой Х-хромосомы, лежит многократное увеличение повторов тринуклеотида ЦГГ. В норме число повторов колеблется от 5 до 50. Премутация — неэкспрессируемая форма — характеризуется увеличением числа повторов до 50—200. Возрастание числа повторов тринуклеотида ЦГГ свыше 200 приводит к клинической манифестации заболевания и цитогенетическому проявлению ломкой Х-хромосомы. Как правило, у пораженных лиц наблюдается также аномальное метилирование ДНК, приводящее к репрессированию гена.

Интересно, что переход от состояния премутации к полной мутации возникает при передаче от матери, причем экспансия ЦГГ-повторов значительно выше при передаче от матери к сыну, чем от матери к дочери.

Антиципация, характерная для синдрома ломкой Х-хромосомы, объясняется четкой связью между числом тринуклеотидных повторов и тяжестью клинических проявлений заболевания с цитологической экспрессией ломкости Х-хромосомы.

Вопрос 36.Мультифакторные болезни,роль наследственности и роль среды в их развитии,примеры.

 

Вопрос 37.Генеалогический и близнецовый методы:их возможности и этапы проведения.

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный, рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Суть этого метода состоит в том. чтобы выяснить родственные связи и проследить наличие нормального или патологического признака среди близких и дальних родственников в данной семье. Сбор сведений начинается от пробанда. Пробандом называется лицо, родословную которого необходимо составить. Им может быть больной или здоровый человек – носитель какого-либо признака или лицо, обратившееся за советом к врачу-генетику. Братья и сестры пробанда называются сибсами. Обычно родословная составляется по одному или нескольким признакам.

Метод включает два этапа:

•сбор сведений о семье

•генеалогический анализ

Близнецовый метод используется для выяснения наследственной обусловленности признаков и хорошо демонстрирует взаимоотношения между генотипом и внешней средой. С помощью этого метода удалось оценить значимость генетической предрасположенности к многим заболеваниям, пенетрантность, экспрессивность и условия проявления тех или иных видов патологии. Близнецовые данные оказываются полезными для количественной оценки степени генетической детерминированности отдельных признаков, в связи с чем, близнецовый метод можно считать одним из важных методов количественной генетики.

Это один из наиболее ранних методов изучения генетики человека, однако он не утратил своего значения и в настоящее время. Близнецовый метод был введен Ф.Гамильтоном, который выделил среди близнецов две группы:

•одняйцевые (монозиготные)

•двуяйцевые (дизиготные)

Монозиготные близнецы при нормальном эмбриональном развитии всегда одного пола. Дизиготные близнецы рождаются чаще (2/3 общего количества двоен), они развиваются из двух одновременно созревших и оплодотворенных яйцеклеток. Такие близнецы могут быть и однополые и разнополые. С генетической точки зрения они сходны как обычные сибсы, но у них большая общность факторов среды во внутриутробном (пренатальном) и частично в постнатальном периодах.

Если изучаемый признак проявляется у обоих близнецов пары, их называют конкордантными. Конкордантность – это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов – дискордантность.

Близнецовый метод используется в генетике человека для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака.

Для оценки роли наследственности в развитии того или иного признака производят расчет по формуле:

Н = (% сходства ОБ - % сходства ДБ) / (100 - % сходства ДБ)

где:

Н- коэффицент наследственности

ОБ – однояйцевые близнецы

ДБ – двуяйцевые близнецы

•При Н = 1 признак полностью определяется наследственным компонентом

•При Н = 0 признак определяется влиянием среды

•При Н = близкий к 0,5 признак определяется примерно одинаковым влиянием наследственности и среды на формирование признака

Остальное в таблице!

Вопрос 38.Цитогенетический метод:этапы и возможности. Кариотип и идиограмма хромосом человека.

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.

Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов,лекарственных препаратов и др.

Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.

При цитологических исследованиях интерфазных ядер со- матических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

Цитогенетический анализ включает три основных этапа: 1) культивирование клеток; 2) окраску препарата; 3) микроскопический анализ препарата.

Остальное в тетради!

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

ИДИОГРАММА (от греческого idios — особый, своеобразный и gramma — рисунок, линия), схематическое обобщённое изображение кариотипа с соблюдением усреднённых количеств, отношений между отдельными хромосомами и их частями. На идиограмме изображаются не только морфологические признаки хромосом, но и особенности их первичной структуры, спирализации, районы гетерохроматина и др. Сравнительный анализ идиограмм используется в кариосистематике для выявления и оценки степени родства различных групп организмов на основании сходства и различия их хромосомных наборов.

Вопрос 39. Популяционно-статистический и биохимический методы изучения наследственности человека.

В медицинской генетике популяционно-статистический метод используется при изучении наследственных болезней населения, частоты нормальных и патологических генов, генотипов и фенотипов в популяциях раз­личных местностей, стран и городов. Кроме того, этот метод изучает закономерности распространения наследственных болезней в разных по строению популяциях и возможность прогнозировать их частоту в последующих поколениях.

Популяционно-статистический метод используется для изучения:

а) частоты генов в популяции, включая частоту наследственных болезней;

б) закономерности мутационного процесса;

Этот метод позволяет изучить распространение отдельных генов в человеческих популяциях. Обычно производится непосредственное выборочное исследование части популяции либо изучают архивы больниц, родильных домов, а также проводят опрос путем анкетирования. Выбор способа зависит от цели исследования. Последний этап состоит в статистическом анализе. Одним из наиболее простых и универсальных математических методов является метод, предложенный Г.Харди и В. Вайнбергом (в данной статье не рассмотрен). Имеется и ряд других специальных математических методов. В результате становится возможным определить частоту генов в различных группах населения, частоту гетерозиготных носителей ряда наследственных аномалий и болезней.

Изучение распространенности генов на определенных территориях показывает, что в этом отношении их можно разделить на две категории:

•имеющие универсальное распространение (к их числу относится большинство известных генов)

•встречающиеся локально, приемущественно в определенных районах; к их числу относятся, например, ген серповидноклеточной анемии и ген, определяющий врожденный вывих бедра

Популяционно-статистический метод позволяет определить генетическую структуру популяций (соотношение между частотой гомозигот и гетерозигот). Знание генетического состава популяций имеет большое значение для социальной гигиены и профилактической медицины.

– Конец работы –

Эта тема принадлежит разделу:

Вопрос 1. Предмет,задачи и методы генетики. Вопрос 2 . Наследственность и изменчивость - фундаментальные свойства живого, их диалектическое единство

Генетика наука о наследственности и изменчивости живых организмов и методах управления ими В ее основу легли закономерности наследственности... Задачи генетики вытекают из установленных общих закономерностей... Генетика является также основой для решения ряда важнейших практических задач К ним относятся выбор наиболее...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Ядерные и цитоплазматические мутации

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Цитологические основы законов Менделя
Цитологические основы базируются на: · парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака) · особенностях мейоза (процессах, происходящих

Модификационная изменчивость
Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможн

Генотипическая изменчивость
Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности -- генов, влекущие за собой изменения н

Комбинативная изменчивость
Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при

Модификационная изменчивость
Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможн

Биохимические методы
Эти методы используются для диагностики болезней обмена веществ, причиной которых является изменение активности определенных ферментов. С помощью биохимических методов открыто около 500 молекулярны

Методы пренатальной диагностики
Анализ родословной родителей Генетический анализ для родителей Инвазивные (разрушающие) методы пренатальной диагностики · Биопсия хориона · Плацентоцентез (поздн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги