рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Приборы с зарядовой связью

Приборы с зарядовой связью - раздел Электроника, Твердотельная электроника Новым Типом Полевых Полупроводниковых Приборов, Работающих В Динамическом Реж...

Новым типом полевых полупроводниковых приборов, работающих в динамическом режиме, являются приборы с зарядовой связью (ПЗС). На рисунке 6.19 приведена схема, поясняющая устройство и основные физические принципы работы ПЗС. Приборы с зарядовой связью представляют собой линейку или матрицу последовательно расположенных МДП‑структур. Величина зазора между соседними МДП‑структурами невелика и составляет 1‑2 мкм. ПЗС‑элементы служат для преобразования оптического излучения в электрические сигналы и передачи информации от одного элемента электронной схемы к другому.

Рис. 6.19. Устройство и принцип работы приборов с зарядовой связью

Рассмотрим принцип работы ПЗС. При подаче обедняющего импульса напряжения VG1 на затвор 1‑го элемента в ОПЗ полупроводника образуется неравновесный слой обеднения. Для электронов в полупроводнике р‑типа это соответствует формированию под затвором 1‑го элемента потенциальной ямы. Известно, что неравновесное состояние сохраняется в период времени t порядка времени генерационно-рекомбинационных процессов τген. Поэтому все остальные процессы в ПЗС‑элементах должны проходить за времена меньше τген. Пусть в момент времени t1 >> τген в ОПЗ под затвор 1‑го элемента инжектирован каким-либо образом информационный заряд электронов (рис. 6.19б). Теперь в момент времени t2 > t1, но t2 << τген на затвор 2‑го ПЗС‑элемента подадим напряжение VG2 > VG1, способствующее формированию более глубокой потенциальной ямы для электронов под затвором 2‑го элемента. Вследствие диффузии и дрейфа возникнет поток электронов из ОПЗ под 1‑м элементом в ОПЗ под вторым элементом, как показано на рисунке 6.19в. Когда весь информационный заряд перетечет в ОПЗ 2‑го ПЗС‑элемента, напряжение на затворе VG1 снимается, а на затворе VG2 уменьшается до значения, равного VG1 (см. рис. 6.19г). Произошла nepeдача информационного заряда. Затем цикл повторяется и заряд передается дальше в ОПЗ 3-го ПЗС‑элемента. Для того, чтобы приборы с зарядовой связью эффективно функционировали, необходимо, чтобы время передачи tпер от одного элемента к другому было много меньше времени генерационно-рекомбинационных процессов (tпер << τген). Не должно быть потерь информационного заряда в ОПЗ вследствие захвата на поверхностные состояния, в связи с чем требуются МДП‑структуры с низкой плотностью поверхностных состояний (Nss ≈ 1010 см-2·эВ-1) [21, 13, 11, 26].

6.16. Полевой транзистор с затвором в виде р‑n перехода

Рассмотрим характеристики полевого транзистора, затвор у которого выполнен в виде р‑n перехода. На рисунке 6.20 показана одна из возможных топологий такого транзистора. Омические контакты к левой и правой граням полупроводниковой подложки будут являться истоком и стоком, область квазинейтрального объема, заключенная между обедненными областями р‑n переходов – каналом, а сильно легированные n+ области сверху и снизу – затвором полевого транзистора. Конструктивно ПТ с затвором в виде р‑n перехода может быть выполнен с использованием планарной технологии и в различных других вариантах.

При приложении напряжения VGS к затвору ПТ, обеспечивающего обратное смещение р‑n перехода (VGS > 0), происходит расширение обедненной области р‑n перехода в полупроводниковую подложку, поскольку затвор легирован существенно сильнее, чем подложка (ND >> NA). При этом уменьшается поперечное сечение канала, а следовательно, увеличивается его сопротивление. Приложенное напряжение исток‑сток VDS вызовет ток в цепи канала полевого транзистора. Знак напряжения VDS необходимо выбирать таким образом, чтобы оно также вызывало обратное смещение затворного р‑n перехода, то есть было бы противоположно по знаку напряжению VGS. Таким образом, полевой транзистор с затвором в виде р‑n перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Рис. 6.20. Схематическое изображение полевого транзистора с затвором в виде р‑n перехода

Получим вольт‑амперную характеристику транзистора. Здесь, как и ранее, ось у направим вдоль канала, ось х – по ширине канала, ось z – по глубине канала. Обозначим длину, ширину и высоту канала при отсутствии напряжения на транзисторе как L, W, Н (VGS = VDS = 0).

При приложении напряжения к затвору VGS > 0 и стоку VDS < 0 произойдет расширение обедненной области р‑n перехода на величину Δlоб, равную:

. (6.88)

Поскольку напряжение исток‑сток VDS распределено вдоль канала VDS(у), то изменение ширины канала транзистора будет различно по длине канала. При этом высота канала h(y) будет равна:

. (6.89)

Введем напряжение смыкания VG0 – напряжение на затворе, когда в квазиравновесных условиях (VDS = 0) обедненные области р‑n переходов смыкаются: h(y) = 0.

Тогда из (6.89) следует, что

. (6.90)

Соотношение (6.89) с учетом (6.90) можно переписать в виде:

. (6.91)

Выделим на длине канала участок от у до у+dy, сопротивление которого будет dR(y). При токе канала IDS на элементе dy будет падение напряжения dVDS(y), равное:

. (6.92)

Величина сопротивления dR(y) будет равна:

. (6.93)

Подставим (6.92) в (6.93) и проведем интегрирование по длине канала:

. (6.94)

Поскольку удельное объемное сопротивление ρ равно , преобразуем величину :

. (6.95)

Здесь – заряд свободных дырок в канале на единицу площади.

Подставляя (6.95) в (6.94) и проведя интегрирование, получаем следующую зависимость тока стока IDS от напряжения на затворе VG и стоке VDS для полевого транзистора с затвором в виде р-n перехода:

. (6.96)

При малых значениях напряжения исток‑сток в области плавного канала VDS << VG ток IDS равен:

. (6.97)

Если сравнить соотношение (6.97) с выражением (6.10) для тока стока МДП полевого транзистора в области плавного канала, то видно, что эти выражения совпадают при малых значениях напряжения VDS.

Из (6.91) следует, что при напряжениях VG < VG0 всегда можно найти такое напряжение на стоке VDS , когда вблизи стока произойдет смыкание канала: h(y = L, VG, VDS) = 0.

Аналогично процессам в МДП ПТ это явление называется отсечкой. Из (6.91) следует, что напряжение отсечки VDS* будет равно:

. (6.98)

Также заметим, что выражение (6.98) аналогично соотношению (6.11) для напряжения отсечки МОП ПТ, а напряжение смыкания VG0 имеет аналогом величину порогового напряжения VТ.

По мере роста напряжения исток‑сток VDS точка отсечки перемещается от истока к стоку. При этом аналогично МДП ПТ наблюдаются независимость тока стока от напряжения на стоке и эффект модуляции длины канала. Подставляя (6.98) в (6.96), получаем зависимость тока стока IDS в области отсечки для полевого транзистора с затвором в виде р‑n перехода:

. (6.99)

В области отсечки выражение (6.99) хорошо аппроксимируется квадратичной зависимостью вида:

. (6.100)

На рисунке 6.21а, б показаны вольт-амперные характеристики в ПТ с затвором в виде р‑n перехода. Их отличительной особенностью является то, что при напряжении на затворе VG = 0 канал транзистора открыт и величина тока через него максимальна.

Рис. 6.21. Характеристики транзистора КП302Б:

а) выходные характеристики; б) начальные участки выходных характеристик

Быстродействие ПТ с затвором в виде р‑n переходов обусловлено зарядкой барьерных емкостей СG затворных р‑n переходов через сопротивление канала RK. Величина времени заряда . Емкость затвора СG и сопротивление канала RK равны:

; (6.101)

. (6.102)

Выражение (6.102) имеет минимальное значение при ширине обедненной области , при этом граничная частота

. (6.103)

При значениях H = L для кремния (εs = 11,8) с удельным сопротивлением ρ, равным ρ = 1 Ом·см, граничная частота будет составлять величину несколько гигагерц.

6.17. Микроминиатюризация МДП‑приборов

Полевые приборы со структурой металл – диэлектрик – полупроводник в силу универсальности характеристик нашли широкое применение в интегральных схемах (ИС). Одна из основных задач микроэлектроники заключается в повышении степени интеграции и быстродействия интегральных схем. Для ИС на МДП‑приборах благодаря чрезвычайно гибкой технологии их изготовления эта задача решается несколькими путями. В основе одного из подходов лежит принцип двойной диффузии. Эта технология получила название Д‑МОП технологии, когда структура имеет планарный характер, и V‑МОП технологии, когда структура транзистора имеет вертикальный характер. Другой подход связан с пропорциональной микроминиатюризацией обычного планарного МДП‑транзистора и получил название высококачественной, или N‑МОП, технологии.

Таблица 3. Эволюция размеров и параметров МДП‑приборов

Параметры прибора (схемы) n-МОП с обогащенной нагрузкой, 1972 МОП, 1980 Коэффициент изменения
Длина канала L, мкм 1-0,6 0,13 N -1
Поперечная диффузия LD, мкм 1,4 0,4     N -1
Глубина p-n переходов xB, мкм 2,0 0,8   0,07-0,13 N -1
Толщина затворного окисла dox, нм N -1
Напряжение питания Vпит, В 4-15 2-4     N -1
Минимальная задержка вентиля , нс 12-15 0,5     N -1
Мощность на вентиль Р, мВт 1,5 0,4     N -2
Количество транзисторов в процессоре Intel 2,5 тыс 80 тыс 1,2 млн 42 млн N -2

 

Согласно основным положениям модели пропорциональной микроминиатюризации при уменьшении длины канала в N раз для сохранения тех же характеристик транзистора другие его параметры (толщина окисла, ширина канала, напряжение питания) необходимо уменьшить в N раз, а концентрацию легирующей примеси в подложке увеличить в N раз. Действительно, при таком изменении, как следует из (6.8), величина порогового напряжения VT и величина проводимости канала практически не изменяются. Быстродействие, определяемое временем пролета носителей через канал, согласно (6.31) возрастет в N раз, ток канала уменьшится в N раз, рассеиваемая мощность уменьшится в N2 раз. В таблице 3 приведена динамика изменения основных параметров МДП‑приборов, проявляющаяся при пропорциональной микроминиатюризации.

Идеи и принципы пропорциональной микроминиатюризации позволяют использовать масштабирование МДП‑транзисторов при разработке интегральных схем на их основе. Такой подход позволил фирме Intel модернизировать процессоры персональных компьютеров каждые три-четыре года. В таблице 4 приведены этапы пропорциональной микроминиатюризации процессоров Intel за последние тридцать лет.

Таблица 4. Микроминиатюризация процессоров Intel

Модель Год выпуска Транзисторы Тех. процесс Тактовая частота
2 250 10 мкм 108 КГц
2 500 10 мкм 200 КГц
5 000 6 мкм 2 МГц
29 000 3 мкм 5-10 МГц
120 000 1,5 мкм 6-12,5 МГц
275 000 1,5-1 мкм 16-33 МГц
486DX 1 180 000 1-0,6 мкм 25-100 МГц
Pentium 3 100 000 0,8-0,35 мкм 60-200 МГц
Pentium II 7 500 000 0,35-0,25 мкм 233-450 МГц
Pentium III 24 000 000 0,25-0,13 мкм 450-1300 МГц
Pentium 4 42 000 000 0,18-0,13 мкм >1400 МГц

 

На рисунке 6.22 показана в полулогарифмическом масштабе эволюция размеров МДП‑транзистора и длины его канала. Обращает внимание на себя тот факт, что принципы пропорциональной микроминиатюризации позволили вплотную придвинуться к размерам базового элемента интегральных схем, ниже которых находится предел, обусловленный физическими ограничениями [31].

Опыт разработки МДП‑транзисторов с длинами канала 0,25-0,1 мкм показывает, что в таких приборах резко нарастает количество новых физических явлений, в том числе и квантовых. Принцип пропорциональной микроминиатюризации при этих значениях линейных размеров уже перестает работать.

Рис. 6.22. Уменьшение размеров транзистора

– Конец работы –

Эта тема принадлежит разделу:

Твердотельная электроника

На сайте allrefs.net читайте: "Твердотельная электроника"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Приборы с зарядовой связью

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Твердотельная электроника
    Учебное пособие     Петрозаводск 2004     ББК 22.37 УДК 539.2 Г 957

Гуртов, В. А.
Г957 Твердотельная электроника: Учеб. пособие / В. А. Гуртов; ПетрГУ. – Петрозаводск, 2004. – 312 с. ISBN 5‑8021‑0319‑1     В учебном

Зонная структура полупроводников
Согласно постулатам Бора энергетические уровни для электронов в изолированном атоме имеют дискретные значения. Твердое тело представляет собой ансамбль отдельных атомов, химическая связь между кото

Статистика электронов и дырок в полупроводниках
Равновесные процессы – процессы, происходящие в телах, которые не подвергаются внешним воздействиям. В состоянии термодинамического равновесия для данного образца кристалла при заданной температуре

Распределение квантовых состояний в зонах
Стационарные состояния электрона в идеальном кристалле характеризуются квазиимпульсом р. Запишем принцип неоднородностей Гейзенберга для квазиимпульсов dpx, dpy

Концентрация носителей заряда и положение уровня Ферми
Электроны, как частицы, обладающие полуцелым спином, подчиняются статистике Ферми – Дирака. Вероятность того, что электрон будет находиться в квантовом состоянии с энергией Е, выражается фун

Концентрация электронов и дырок в собственном полупроводнике
Напомним, что полупроводник называется собственным, если в нем отсутствуют донорные и акцепторные примеси. В этом случае электроны появляются в зоне проводимости только за счет теплового заброса из

Концентрация электронов и дырок в примесном полупроводнике
Уравнение (1.14) справедливо только для равновесных носителей заряда, то есть в отсутствие внешних воздействий. В наших обозначениях

Определение положения уровня Ферми
В предыдущих рассуждениях мы считали, что уровень Ферми задан. Посмотрим теперь, как можно найти положение уровня Ферми. Для собственного полупроводника уравнение электронейтральности прио

Проводимость полупроводников
При приложении электрического поля к однородному полупроводнику в последнем протекает электрический ток. При наличии двух типов свободных носителей – электронов и дырок – проводимость σ

Токи в полупроводниках
Как уже отмечалось выше, проводимость, а следовательно, и ток в полупроводниках обусловлены двумя типами свободных носителей. Кроме этого, также есть две причины, обуславливающие появление электрич

Неравновесные носители
Образование свободных носителей заряда в полупроводниках связано с переходом электронов из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить энергию, до

Уравнение непрерывности
Динамика изменения неравновесных носителей по времени при наличии генерации и рекомбинации в полупроводнике, а также при протекании электрического тока определяется уравнением непрерывности. Для по

Ток термоэлектронной эмиссии
Рассчитаем ток эмиссии электронов с поверхности полупроводника в условиях термодинамического равновесия. Все свободные электроны в полупроводнике находятся в потенциальной яме. Функция распределени

Эффект поля, зонная диаграмма при эффекте поля
Рассмотрим зонную диаграмму приповерхностной области полупроводников в равновесных условиях. Рассмотрим, как будет меняться концентрация свободных носителей в приповерхностной области полупроводник

Концентрация электронов и дырок в области пространственного заряда
Рассчитаем, как меняется концентрация электронов и дырок в области пространственного заряда. Для определенности рассмотрим полупроводник n‑типа. В условиях термодинамического равновеси

Дебаевская длина экранирования
Количественной характеристикой эффекта поля, характеризующей глубину проникновения поля в полупроводник, является дебаевская длина экранирования. Рассмотрим случай, когда полупроводник внесен во вн

Зонная диаграмма барьера Шоттки при внешнем напряжении
Рассмотрим, как меняется зонная диаграмма контакта металл – полупроводник при приложении внешнего напряжения VG, знак которого соответствует знаку напряжения на металлическом элек

Распределение электрического поля и потенциала в барьере Шоттки
Рассмотрим более детально, как меняются электрическое поле и потенциал в области пространственного заряда контакта металл – полупроводник в виде барьера Шоттки. Для определенности будем рассматрива

Гетеропереходы
Гетеропереходом называют контакт двух полупроводников различного вида и разного типа проводимости, например, pGe – nGaAs. Отличие гетеропереходов от обычного p‑n п

Зонная диаграмма приповерхностной области полупроводника в равновесных условиях
Будем рассматривать изменение энергетического спектра свободных носителей заряда в приповерхностной области полупроводника под действием внешнего электрического поля. При этом будем считать, что на

Уравнение Пуассона для ОПЗ
Запишем уравнение Пуассона для полупроводника p-типа: (3.6) Величина ρ

Выражение для заряда в ОПЗ
Выражение (3.18) для заряда в ОПЗ, полученное в предыдущем параграфе, справедливо для любых значений поверхностного потенциала. Однако использование его для конкретных случаев довольно затруднено в

Избыток свободных носителей заряда
Важной характеристикой ОПЗ является значение заряда свободных носителей (электронов или дырок) Qp,n или, если выразить этот заряд в единицах элементарного заряда, велич

Среднее расстояние локализации свободных носителей от поверхности полупроводника
Для ряда процессов, протекающих в ОПЗ, важной характеристикой является среднее расстояние lc, на котором локализованы свободные носители заряда, электроны

Форма потенциального барьера на поверхности полупроводника
При решении уравнения Пуассона в разделе 3.2.1 нами был получен первый интеграл в виде (3.16). Для нахождения формы потенциального барьера, т.е. зависимости электростатического потенциала ψ

Обеднение и слабая инверсия в примесном полупроводнике
Для этой области, как следует из (3.15), функция F(ψ, φ0) имеет совсем простой вид. Второй интеграл уравнения Пуассона при этом будет равен:

Область обогащения и очень сильной инверсии в примесном полупроводнике
Будем рассматривать область изменения поверхностного потенциала ψs, когда для зарядов в ОПЗ справедливы соотношения (3.19) и (3.22). Получим форму потенциального барьера &

Емкость области пространственного заряда
Поскольку полный заряд в ОПЗ Qsc зависит от величины поверхностного потенциала ψs, то область пространственного заряда обладает определенной емкостью C

Влияние вырождения на характеристики ОПЗ полупроводника
При высоком уровне легирования полупроводниковой подложки или сильных изгибах зон уровень Ферми в ОПЗ может оказаться вблизи дна зоны проводимости или потолка валентной зоны. В этом случае выражени

Основные определения
Одной из принципиальных особенностей, характеризующих поверхность полупроводников или границу раздела полупроводника с каким-либо веществом, является изменение энергетического спектра для электроно

Природа поверхностных состояний
По физической природе поверхностные состояния разделяются на четыре основных типа [13]:   1) поверхностные состояния типа Тамма; 2) поверхностные состояния типа Шокл

Статистика заполнения ПС
Рассмотрим, как меняется заряд ПС при изменении величины поверхностного потенциала ψs. Функцию заполнения ПС возьмем в виде функции Ферми – Дирака. Величина энергии Ферми на

Уравнение электронейтральности
Рассмотрим более подробно связь между напряжением на затворе VG МДП‑структуры и поверхностным потенциалом ψs. Все приложенное напряжение V

Определение типа проводимости полупроводниковой подложки
Для определения типа проводимости подложки воспользуемся высокочастотной вольт‑фарадной характеристикой. Как следует из эквивалентной схемы, приведенной на рисунке 3.13, и вида высок

Определение толщины подзатворного диэлектрика
Поскольку, как было показано ранее, в обогащении емкость МДП‑структуры определяется только геометрической емкостью диэлектрика Cox, то:

Определение величины и профиля концентрации легирующей примеси
Для определения величины легирующей концентрации воспользуемся следующим свойством высокочастотных C‑V характеристик МДП‑структур: их емкость в области инверсии достигает

Определение величины и знака встроенного заряда
Для определения величины и знака встроенного в диэлектрик МДП‑структуры заряда обычно пользуются высокочастотным методом ВФХ. Для этого, зная толщину подзатворного диэлектрика dox

Дифференциальный метод
Дифференциальный метод, или метод Термана, основан на сравнении экспериментальной высокочастотной емкости МДП‑структуры с теоретической расчетной емкостью идеальной МДП‑структуры с таки

Интегральный метод
Интегральный метод, или метод Берглунда, основан на анализе равновесной низкочастотной вольт-фарадной характеристики. Поскольку для равновесной низкочастотной C‑V кривой справед

Температурный метод
Температурный метод, или метод Грея – Брауна, основан на анализе изменения напряжения плоских зон VFB МДП‑структуры при изменении температуры T. При изменении темпера

Виды флуктуаций поверхностного потенциала
Предыдущее рассмотрение электрофизических процессов в МДП‑структурах неявно предполагало, что такие параметры, как величина встроенного заряда Qox, толщина подзатворного диэ

Конденсаторная модель Гоетцбергера для флуктуаций поверхностного потенциала
Пусть флуктуации поверхностного потенциала обусловлены крупномасштабными технологическими флуктуациями плотности встроенного в диэлектрик заряда Qox = qNox. Толщ

Среднеквадратичная флуктуация потенциала, обусловленная системой случайных точечных зарядов
Рассмотрим систему зарядов на бесконечной плоскости, координата каждого из которых является случайной функцией. Заряды будем считать малыми и находящимися в узлах со средним расстоянием между узлам

Потенциал, создаваемый зарядом, находящимся на границе двух сред с экранировкой
Как было показано, величина среднеквадратичной флуктуации потенциала σψ определяется потенциалом единичного точечного заряда при случайном их распределении. В связи с эт

Поле заряда, расположенного под границей двух диэлектриков
Рассмотрим случай экранировки зарядов на рисунке 3.24. Заряд q0 расположен в среде I с диэлектрической постоянной ε = ε1. Требуется найти поле,

Функция распределения потенциала при статистических флуктуациях
При рассмотрении флуктуаций поверхностного потенциала вопрос о нахождении вида функций распределения является одним из важных. Поскольку заряженные центры в МДП‑структуре дискретны и случайны

Зависимость величины среднеквадратичной флуктуации от параметров МДП-структуры
Как следует из разделов 3.7.3 и 3.7.4, для случая слабой инверсии можно получить зависимость величины среднеквадратичной флуктуации от параметров МДП‑структуры. Подставим значение для потенци

Пространственный масштаб статистических флуктуаций
Рассмотрим, какой характерный пространственный масштаб имеют статистические флуктуации поверхностного потенциала в МДП‑структурах. Пусть на границе раздела полупроводник – диэлектрик находятс

Выпрямление в диоде
Одним из главных свойств полупроводникового диода на основе p‑n перехода является резкая асимметрия вольт‑амперной характеристики: высокая проводимость при прямом смещении и низк

Характеристическое сопротивление
Различают два вида характеристического сопротивления диодов: дифференциальное сопротивление rD и сопротивление по постоянному току RD. Дифференциальное

Варикапы
Зависимость барьерной емкости СБ от приложенного обратного напряжения VG используется для приборной реализации. Полупроводниковый диод, реализующий эту зависимос

Влияние генерации, рекомбинации и объемного сопротивления базы на характеристики реальных диодов
В реальных выпрямительных диодах на основе p‑n перехода при анализе вольт‑амперных характеристик необходимо учитывать влияние генерационно-рекомбинационных процессов в обедненной

Влияние объемного сопротивления базы диода на прямые характеристики
База диода на основе p‑n перехода обычно легирована существенно меньше, чем эмиттер. В этом случае омическое сопротивление квазинейтральных областей диода будет определяться сопротивле

Влияние температуры на характеристики диодов
Как уже отмечалось, при прямом смещении ток диода инжекционный, большой по величине и представляет собой диффузионную компоненту тока основных носителей. При обратном смещении ток диода маленький п

Стабилитроны
Стабилитроном называется полупроводниковый диод, вольт‑амперная характеристика которого имеет область резкой зависимости тока от напряжения на обратном участке вольт̴

Туннельный пробой в полупроводниках
  Проанализируем более подробно механизмы туннельного и лавинного пробоя. Рассмотрим зонную диаграмму диода с p‑n переходом при обратном смещении при условии, чт

Лавинный пробой в полупроводниках
Рассмотрим случай однородного электрического поля в полупроводнике. Если двигаясь вдоль силовых линий электрического поля электрон на расстоянии, равном длине свободного пробега λ, н

Приборные характеристики стабилитронов
  Основными характеристиками стабилитрона являются ток Iст и напряжение Uст стабилизации, дифференциальное напряжение стабилитрона rст

Туннельный и обращенный диоды
Туннельным диодом называют полупроводниковый диод на основе p+‑n+ перехода с сильнолегированными областями, на прямом участке вольт-амперной

Переходные процессы в полупроводниковых диодах
При быстрых изменениях напряжения на полупроводниковом диоде на основе обычного p‑n перехода значение тока через диод, соответствующее статической вольт-амперной характеристике, устана

Основные физические процессы в биполярных транзисторах
В рабочем режиме биполярного транзистора протекают следующие физические процессы: инжекция, диффузия, рекомбинация и

Биполярный транзистор в схеме с общей базой. Зонная диаграмма и токи
На рисунке 5.6а показана зонная диаграмма биполярного транзистора в схеме с общей базой в условиях равновесия. Значками (+) и (–) на этой диаграмме указаны основные и неосновные носители.

Дифференциальные параметры биполярных транзисторов в схеме с общей базой
Основными величинами, характеризующими параметры биполярного транзистора, являются коэффициент передачи тока эмиттера α, сопротивление эмиттерного (rэ), и коллекторног

Коэффициент инжекции
Рассмотрим более подробно выражение для коэффициента переноса, для этого проанализируем компоненты эмиттерного тока, как показано на диаграмме (рис. 5.10).

Коэффициент переноса. Фундаментальное уравнение теории транзисторов
Коэффициент передачи эмиттерного тока a характеризует изменение коллекторного тока Iк при вызвавшем его изменении эмиттерного тока Iэ. Ток коллек

Дифференциальное сопротивление эмиттерного перехода
Из выражения (5.7) для ВАХ биполярного транзистора легко получить общее выражение для дифференциального сопротивления эмиттерного перехода:

Дифференциальное сопротивление коллекторного перехода
Дифференциальное сопротивление коллекторного перехода rк определяется как .

Коэффициент обратной связи
Коэффициент обратной связи по напряжению в биполярном транзисторе в схеме с общей базой показывает, как изменится напряжение на эмиттерном переходе при единичном изменении напряжения на коллекторно

Объемное сопротивление базы
Объемное сопротивление базы БТ в схеме с общей базой определяется чисто геометрическими особенностями конструкции БТ. Для сплавного транзистора, как показано на рисунке 5.14, общее сопротивление бу

Тепловой ток коллектора
Тепловым током коллектора Iк0 называют коллекторный ток Iк, измеренный в режиме разомкнутого эмиттерного перехода (режим холостого хода в эмиттерной цепи I

Биполярный транзистор в схеме с общим эмиттером
Схема включения биполярного транзистора с общим эмиттером приведена на рисунке 5.15: Характеристики транзистора в этом режиме будут отличаться от характеристик в режиме с общей базой. В тр

Дрейфовые транзисторы
В предыдущих разделах рассматривался перенос инжектированных носителей через базу биполярного транзистора. Процесс переноса являлся диффузионным, поскольку электрическое поле в базе отсутствует. Пр

Параметры транзистора как четырехполюсника.
h-параметры Биполярный транзистор в схемотехнических приложениях представляют как четырехполюсник и рассчитывают его параметры для такой схемы. Для транзистора как чет

Система z-параметров
Зададим в качестве входных параметров биполярного транзистора как четырехполюсника токи I1 и I2, а напряжения U1 и U2 будем о

Частотные и импульсные свойства транзисторов
Процесс распространения инжектированных в базу неосновных носителей заряда от эмиттерного до коллекторного перехода идет диффузионным путем. Этот процесс достаточно медленный, и инжектированные из

Глава 6. Полевые транзисторы
Физической основой работы полевого транзистора со структурой металл – диэлектрик – полупроводник является эффект поля. Напомним, что эффект поля состоит в том, что под действием внешнего электричес

Характеристики МОП ПТ в области плавного канала
Рассмотрим полевой транзистор со структурой МДП, схема которого приведена на рисунке 6.2. Координата z направлена вглубь полупроводника, y – вдоль по длине канала и х – по шири

Характеристики МОП ПТ в области отсечки
Как следует из уравнения (6.9), по мере роста напряжения исток‑сток VDS в канале может наступить такой момент, когда произойдет смыкание канала, т.е. заряд электронов в кана

Эффект смещения подложки
Рассмотрим, как меняются характеристики МДП‑транзистора при приложении напряжения между истоком и подложкой. Отметим, что приложенное напряжение между истоком и подложкой при условии наличия

Малосигнальные параметры
Для МДП‑транзистора характерны следующие малосигнальные параметры: крутизна характеристики S , внутреннее сопротивление Ri, коэффициент усиления m. Крутизна пе

Методы определения параметров МОП ПТ из характеристик
Покажем, как можно из характеристик транзистора определять параметры полупроводниковой подложки, диэлектрика и самого транзистора. Длину канала L и ширину W обычно знают из топологии

Учет диффузионного тока в канале
Запишем выражение для плотности тока в канале МДП‑транзистора с учетом дрейфовой и диффузионной составляющих тока. Имеем:

Неравновесное уравнение Пуассона
Запишем уравнение Пуассона для ОПЗ полупроводника р‑типа, находящегося в неравновесных условиях, в виде:

Уравнение электронейтральности в неравновесных условиях
Как уже отмечалось в разделе 6, для получения в явном виде вольт-амперной характеристики транзистора необходимо найти связь между поверхностным потенциалом ψs и квазиуровнем

МОП ПТ с плавающим затвором
Полевой транзистор с плавающим затвором по принципу работы похож на МНОП‑транзистор. Только в транзисторах с плавающим затвором инжектированный заряд хранится на плавающем затворе, находящемс

Физические явления, ограничивающие микроминиатюризацию
Анализ показывает, что наряду с тенденцией уменьшения геометрических размеров каждого элемента в схемах проявляется тенденция к увеличению числа элементов в схеме. Если в начале 1960‑х годов

Феноменологическое описание ВАХ динистора
Для объяснения ВАХ динистора используют двухтранзисторную модель. Из рисунка 7.5 следует, что тиристор можно рассматривать как соединение р‑n‑р транзистора с n‑р‑n

Зонная диаграмма и токи диодного тиристора в открытом состоянии
В открытом состоянии (α – велики) все три перехода смещены в прямом направлении. Это происходит вследствие накопления объемных зарядов в базах n2, p2

Тринистор
Как уже говорилось, чтобы перевести тиристор в открытое состояние, необходимо накопить избыточный отрицательный заряд в базе n1 и положительный в базе р2. Это ос

Феноменологическое описание ВАХ тринистора
Аналогично как для динистора, запишем систему уравнений для тока тиристора через эмиттерный и коллекторный p‑n переходы, с учетом управляющего тока Iу через вторую ба

Требования к зонной структуре полупроводников
Эффект Ганна наблюдается главным образом в двухдолинных полупроводниках, зона проводимости которых состоит из одной нижней долины и нескольких верхних долин [32, 33]. Для того, чтобы при п

Статическая ВАХ арсенида галлия
Получим зависимость скорости дрейфа электронов от поля υД(E) для случая отрицательного дифференциального сопротивления. Продифференцировав уравнение

Зарядовые неустойчивости в приборах с отрицательным дифференциальным сопротивлением
Рассмотрим однородно легированный электронный полупроводник с омическими контактами, к которому приложена разность потенциалов (рис. 8.6). Создаваемое в нем электрическое поле будет E = E

Глава 9. Классификация и обозначения полупроводниковых приборов
При использовании полупроводниковых приборов в электронных устройствах для унификации их обозначения и стандартизации параметров используются системы условных обозначений. Эта система классифицируе

Условные обозначения и классификация отечественных полупроводниковых приборов
Рассмотрим на примере ОСТ 11.336.919‑81 «Приборы полупроводниковые. Система условных обозначений» систему обозначений полупроводниковых приборов, которая состоит из 5 элементов. В основу сист

Условные обозначения и классификация зарубежных полупроводниковых приборов
За рубежом существуют различные системы обозначений полупроводниковых приборов [36, 38]. Наиболее распространенной является система обозначений JEDEC, принятая объединенным техническим советом по э

Графические обозначения и стандарты
В технической документации и специальной литературе применяются условные графические обозначения полупроводниковых приборов в соответствии с ГОСТ 2.730‑73 «Обозначения условные, графические в

Условные обозначения электрических параметров и сравнительные справочные данные полупроводниковых приборов
Для полупроводниковых приборов определены и стандартизованы значения основных электрических параметров и предельные эксплутационные характеристики, которые приводятся в справочниках. К таким параме

Основные обозначения
А – постоянная Ричардсона С – электрическая емкость CB – барьерная емкость p-n перехода CD – диффузионная емко

Диод выпрямительный
C – емкость диода CБ – барьерная емкость CD – диффузионная емкость Cп Cd – емкость п

Биполярный транзистор
  Eк EC – напряжение источника питания коллекторной цепи h11 – входное сопротивление при коротком замыкании на выходе

Полевой транзистор
  Сox – удельная емкость подзатворного диэлектрика Iс ID – ток стока Iз IG

Физические параметры важнейших полупроводников
Параметр Обозначение Si Ge GaAs InSb Ширина запрещенной зоны, эВ 300 К

Свойства диэлектриков
  Eg, эВ εст ε∞ ρ, г-1∙см-3

Список рекомендованной литературы
  1. Физика твердого тела: Энциклопедический словарь /Гл. ред. В.Г. Барьяхтар, зам. глав. ред. В. Л. Винецкий. Т. 1, 2. Киев: Наукова думка, 1998. 2. Sah C.‑T. Fundamen

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги