рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Экспериментальные методы определения фазовогосостава клинкера и цемента

Экспериментальные методы определения фазовогосостава клинкера и цемента - раздел Высокие технологии, Разработка состава быстротвердеющего портландцемента Экспериментальные Методы Определения Фазовогосостава Клинкера И Цемента. ...

Экспериментальные методы определения фазовогосостава клинкера и цемента.

К наиболее распространенным методам определения фаз клинкера и цемента относятся рентгенофазовый и петрографический.

Петрографический метод основан на использовании как электронного, так и светового микроскопа. Современные электронные микроскопы имеют полезное увеличение до 300 000 раз, что позволяет видеть частицы размером 3 - 5 А. Такое глубокое проникновение в мир малых частиц стало возможным в результате использования в микроскопии электронных лучей, волны которых во много раз короче видимого света.

С помощью электронного микроскопа в области вяжущих веществ можно изучить следующие вопросы форму и размеры отдельных субмикроскопических кристаллов процессы роста и разрушения кристаллов, протекающие на границах зерен процессы диффузии при реакциях в твердой и жидкой фазах фазовые превращения при термической обработке и охлаждении механизм деформации и разрушения и целый ряд других более частных задач. Из перечисленных задач только первая может быть решена прямым методом исследования в прозрачных препаратах на просвет. Для решения остальных задач применяют косвенные методы исследования на специальных препаратах, представляющих собой слепки с поверхности шлифов - реплики.

Различают прямые и косвенные методы исследования. К прямым методам относятся светлопольный и темнопольный способы работы на просвет, а к косвенным - исследование способом реплик.

Рентгеноструктурный анализ является более универсальным и к настоящему времени более совершенным методом исследования материалов, чем другие методы анализа. Пользуясь им, можно производить как количественный и качественный фазовый анализ сложных по своему составу материалов, так и определять строение кристаллических решеток индивидуальных соединений, преимущественную ориентировку и размеры кристаллов, измерять внутренние напряжения и искажения кристаллических решеток. Как метод фазового анализа он особенно полезен при исследовании твердых растворов, явлений полиморфизма, процессов распада синтеза новых соединений.

В практике проведения рентгеноструктурного анализа вяжущих веществ как поликристаллических тел используется главным образом метод порошка. Регистрацию дифрагированного излучения производят или фотографическим метод Дебая - Шерера или ионизационным методами. Оба эти метода приспособлены в настоящее время также и для исследования материалов при низких и высоких температурах.

Сущность метода заключается в изучении дифракционной картины, получаемой при отражении рентгеновских лучей атомными плоскостями в структуре кристаллов. Минимальное количество фаз которое можно обнаружить зависит от многих факторов - условий съемки, состава смесей, величины кристаллических блоков, наличия дефектов решетке и др и составляет от долей до нескольких процентов. 7. Причины расхождения фактического экспери-ментального и расчетного состава клинкера.

Сырьевые смеси в процессе их нагревания до высоких температур претерпевают сложные превращения, сопровождающиеся изменением минералогического состава и физических свойств. Характер изменения физических свойств сырьевых смесей, приготовленных по сухому или мокрому способу, по мере их нагревания оказывается до определенного интервала температур различным, однако химические превращения компонентов и основные химические реакции в обоих видах сырьевых смесей протекают, естественно, в одном и том же направлении.

При снижении температуры спекания гранул в них протекают процессы, которые оказывают сильное влияние на свойства клинкера и цемента. Это показывает, что клинкер является неравновесной системой. Исследование процессов кристаллизации расплавов в системах СаО - SiO2 - Al2O3 и СаО - SiO2 - Al2O3 - Fе2О3 показало, что изменение состава жидкой и твердой фаз в процессе охлаждения расплавов, отвечающих по составу портландцементу, имеет очень сложный характер.

Сложность обусловлена тем, что алит выделяется из расплава вначале и в большем, и в меньшем количестве, чем это соответствует фактическому равновесному состоянию продукта. В последующем, при очень медленном охлаждении, которое используется при построении диаграмм состояния, эти аномалии состава расплава и твердой фазы устраняются в определенных температурных точках системы в одних случаях избыточный C3S разлагается, а в других - недостающий C3S образуется. Система постепенно приходит к равновесному составу.

Если же расплав охлаждать очень быстро, то в клинкере можно зафиксировать избыточное или пониженное количество алита. Так, при быстром охлаждении клинкера белого портландцемента система СаО - SiO2 - Al2O3 от температуры 1450 в продукте содержалось на 10 больше C3S, чем при медленном равновесном его охлаждении. Наоборот, при быстром охлаждении клинкера, характеризующегося высоким содержанием железа глиноземный модуль равен 0,64 , от той же температуры 1450 в продукте содержалось на 12 меньше алита, чем при равновесном охлаждении.

При обжиге портландцементного клинкера полного равновесия между жидкой и твердой фазами не наступает. Во - первых, цементный клинкер в практических условиях обжига плавится всего лишь на 20 - 30 и в нем всегда присутствует твердая фаза, и, во-вторых, скорость охлаждения клинкера в реальных условиях его производства оказывается значительно более высокой, чем этого требуют условия достижения равновесия. В результате того, что расплав клинкера охлаждается не по равновесному режиму, минералогический состав продукта может в значительной степени изменяться. Практически возможны следующие различные варианты кристаллизации расплава в клинкерах 1. Расплав в клинкере в результате медленного охлаждения полностью закристаллизовывается равновесный процесс . 2. Расплав в клинкере в результате очень быстрого охлаждения полностью затвердевает в виде стекла. 3. Расплав в клинкере закристаллизовывается в большей или меньшей степени в зависимости от конкретных условий охлаждения.

При этом кристаллизация расплава происходит независимо от ранее образовавшихся твердых фаз. Различная степень закристаллизованности расплава приводит к отклонению расчетного минералогического состава клинкера от его фактического минералогического состава и особенно в части содержания минералов C3S, С3А и C4AF. Исследования Ли, Паркера, Торопова, Юнга, Богга и других позволили установить границы изменения минералогического состава клинкера в зависимости от условий охлаждения.

При независимой кристаллизации расплава и при затвердевании его в стекло степень несоответствия расчетного и фактического минералогического состава клинкера будет определяться величиной глиноземного модуля последнего.

Действительно образцы одного и того же клинкера с р 2,0, охлажденные по различным режимам, характеризуются довольно близким содержанием C3S, равным 57,5 - 59,6 . Увеличение глиноземного модуля приводит к увеличению различия образцов клинкера, охлажденных с различной скоростью, по содержанию C3S. Так, если различие в содержании C3S в быстро и медленно охлажденном клинкере с р 2,0 составляет всего лишь 2,1 , то в случае аналогичных образцов клинкера с р 3,0 это различие составляет уже 6,1 , а клинкера с р 3,5 составляет 7,2 . При значениях глиноземного модуля 0,9 - 1,8 наблюдается соответствие расчетного и фактического содержания в клинкерах C3S и, следовательно, пригодность формул Кинда. Понижение значений глиноземного модуля ниже 0,9 приводит, наоборот, к уменьшению фактического содержания в клинкере C3S по сравнению с его расчетным количеством.

Так, в клинкере с р 0,66 различие в содержании C3S в пробах, охлажденных быстро и медленно, составляло 7,6 , причем в быстроохлажденном клинкере наблюдалось пониженное содержание минерала.

Таким образом, при полной равновесной кристаллизации расплава фактический минералогический состав клинкера соответствует расчетному, вычисленному по формулам Кинда и Окорокова.

При быстром охлаждении клинкера, когда весь расплав затвердевает в виде стекла, фактический минералогический состав продукта отличается от расчетного. Во - первых, в быстроохлажденных клинкерах отсутствуют кристаллические С3А и C4AF вместо них присутствует соответствующее количество стекла. Во - вторых, в быстроохлажденных клинкерах в зависимости от величины их глиноземного модуля содержится избыточное или недостающее по сравнению с расчетным количество минералов C3S и C2S. Как уже указывалось, при значениях р 0,9 - 1,8 содержание C3S в быстро и медленно охлажденном клинкере оказывается очень близким, при р 1,8 быстро охлажденные клинкеры содержат больше С3S, чем медленно охлажденные, а при р 0,9 - меньше.

Соответственно содержание C2S в быстроохлажденных клинкерах с р 1,8 оказывается пониженным, а с р 0,9 - повышенным. Если предположить, что клинкеры с p 1,8 и р 0,9 от температуры спекания охлаждаются таким образом, что вся образовавшаяся в них твердая фаза остается неизменной, а расплав кристаллизуется самостоятельно, то в клинкерах, несмотря на полную кристаллизацию в них жидкой фазы, сохранится неравновесное состояние 1 в них сохранится избыточное или соответственно пониженное количество алита 2 из расплава выкристаллизовывается в небольшом количестве минерал С5А3, который при обычных условиях обжига наблюдается в клинкере очень редко 3 оказывается, пониженным содержанием С3А и C4AF, поскольку часть принадлежащей им по расчету извести пошла на реакцию с C2S с образованием избыточного количества C3S. Соответственно оказывается пониженным содержание в клинкере и минерала C2S. При значениях глиноземного модуля более 1,8 при расчете минералогического состава клинкера по принятым формулам необходимо пользоваться следующими поправками При охлаждении клинкера со скоростью, недостаточной для затвердевания всего расплава в стекло и не обеспечивающей полной как равновесной, так и самостоятельной кристаллизации жидкой фазы, в продукте будет содержаться некоторое количество стекла и будут иметь место рассмотренные выше несоответствия фактического и расчетного минералогического состава.

Влияние минерализаторов и плавней на фазовый состав клинкера.

Название минерализаторов в технологии силикатных производств получили такие вещества, которые при содержании в основном продукте в очень небольшом количестве 0,1 - 1,0 ускоряют процессы образования различных химических соединений.

При получении портландцемента могут при меняться в качестве минерализаторов соли фтористоводородной кислоты, кремнефтористые соединения отходы суперфосфатного производства, сернокислый и хлористый кальций, а в качестве плавней - окись железа вводимая в состав шихты в виде колчеданных огарков, железной руды, колошниковой пыли, легкоплавкие шлаки являющиеся отходами при производстве цветных металлов и т. д. Механизм действия минерализаторов изменяется в зависимости от изменения их состава.

Наиболее эффективными минерализаторами являются фториды щелочных и щелочноземельных металлов NaF, CaF2, MgF2, BaF2 , а также соли кремнефтористоводородной кислоты Na2SiF6, CaSiF6, MgSiF6 менее эффективно влияют соли хлористой и азотной кислот и некоторые соли серной кислоты.

Минерализующее действие фтористых соединений определяется протеканием следующего ряда процессов. Во - первых, в присутствии фтористых солей ускоряются реакции в твердой фазе. Повышение активности смеси обусловливается разрушающим влиянием иона фтора на кристаллические решетки отдельных сырьевых компонентов.

Так, в присутствии F снижается температура превращения кварца в кристобалит, вследствие чего к моменту интенсивного развития процесса клинкерообразования один из компонентов смеси оказывается в очень активной форме. Начало процесса кристобалитизации кварца наблюдается уже при температуре 900 - 1100 , а в интервале 1100 - 1200 он практически завершается. Наряду с этим в шихте в присутствии F более интенсивно и при пониженной температуре 700 - 900 протекает процесс диссоциации СаСО3. Выделяющаяся активная СаО взаимодействует с фтористой солью, образуя промежуточное соединение.

Например, NaF образует с СаО соединение состава ЗСаO - NaF, которое дает с оставшимся несвязанным NaF эвтектическую смесь, плавящуюся при 650 . Следовательно, образование при низких температурах легкоплавких промежуточных соединений между СаО и фтористыми солями приводит к появлению в спекающейся массе точечных капелек расплава, способствующих протеканию реакций минералообразования.

Эффективность разрушающего воздействия фтористых солей на кристаллические решетки реагирующих веществ возрастает при наличии в газовой фазе паров воды, вызывающих гидролиз минерализаторов. Гидрофториды и пары фтористоводородной кислоты воздействуют на кристаллические тела, способствуя их разрыхлению и образуя в пределах их поверхностных слоев промежуточные соединения. В частности, при реакции фторидов с SiO2 образуется соединение SiF4, которое под воздействием паров воды гидролизуется и образует рыхлый по структуре очень активный б - кристобалит.

При гидролизе CaF2 положительным является и тот факт, что выделяющаяся из минерализатора СаО оказывается весьма активной и незамедлительно реагирует с кислотными окислами с образованием соответствующих минералов. Поскольку CaF2 совершает непрерывный кругооборот в реакционной зоне печи HF реагирует с СаСО3, образуя вновь CaF2 , то окись кальция, выделяющаяся при распаде CaF2, образуется в заметном количестве и оказывает влияние на общее количество усваиваемой в пределах температур 700 - 1200 извести.

Во - вторых, снижается температура образования основного эвтектического расплава на 80 - 150 . Так, в присутствии 1 фтористых солей наблюдалось появление жидкой фазы при температурах 1200 - 1220 , тогда как в сырьевых смесях без минерализаторов температура образования эвтектики находится в пределах 1280 - 1330 . При увеличении количества минерализатора например, CaF2 , в смеси до 3 - 5 явления усадки и спекания последней наступают при температурах на 300 - 400 более низких, чем спекание смесей при отсутствии фтористого кальция.

Причиной подобного флюсующего действия фтористых солей являются низкая температура их плавления в частности, CaF2, который образуется во всех сырьевых смесях в результате взаимодействия HF с CaCO3 и образование легкоплавких промежуточных комплексных соединений с компонентами основного вещества. В результате образования и кристаллизации расплава в клинкере при пониженных температурах увеличивается длина зоны спекания во вращающихся печах и возрастает время пребывания в ней обжигаемого материала, что приводит к более полному протеканию реакций минералообразования.

В - третьих, фтористые соли понижают вязкость клинкерного расплава и способствуют быстрому образованию и росту кристаллов алита. Механизм действия иона фтора в данном случае состоит в том, что он вызывает разрушение анионного каркаса расплава комплексных кремниевокислородных и алюминиевокислородных ионов в результате разрыва связей между кремнием и кислородом, следствием которого является образование групп SiF4 и SiO4. Разрушение анионного каркаса расплава уменьшает его вязкость, способствует повышению подвижности ионов и, следовательно, ускоряет диффузионные процессы, являющиеся лимитирующими моментами при росте кристаллов.

Положительное влияние иона F на рост кристаллов связано также и со способностью фтора замещать кислород при построении кристаллической решетки.

Близость размеров этих двух ионов позволяет фтору при недостатке в зоне роста кристалла кислорода занимать место последнего в строящейся решетке и предотвращатьтем самым торможение процесса роста кристалла или даже полное прекращение последнего. Кремнефтористые соединения при нагревании до температур 500 - 700 распадаются с образованием фторида соответствующего металла CaF2, NaF и т. п. и четырехфтористого кремния SiF4, а в присутствии СаСО3 - с образованием двух фторидов.

Например, при разложении Na2SiF6 в присутствии СаСО3 образуются NaF и CaF2, и минерализующее действие кремнефтористого натрия сводится к действию двух названных фторидов. Эта реакция начинается при температуре около 300 и заканчивается при 680 - 700 . Образующиеся фториды характеризуются высокой дисперсностью и оказываются более активными, чем крупнозернистые материалы того же химического состава, искусственно вводимые в смесь. Кроме того, NaF и CaF2 образуют при температуре около 800 эвтектический расплав, что еще более интенсифицирует реакции минералообразования.

Эти факторы обеспечивают кремнефтористым соединениям более эффективное минерализующее действие, чем отдельным фторидам щелочных и щелочноземельных металлов. Применение фтористых минерализаторов оказывается особенно эффективным при обжиге трудноспекающихся клинкеров с высоким КН, содержащих небольшое количество расплава и характеризующихся повышенным содержанием соединений натрия и калия.

В зависимости от состава смеси и характера сырья оптимальная величина добавки фтористых солей изменяется в пределах от 0,5 до 1 к весу клинкера. В присутствии CaF2 в клинкере образуется повышенное по сравнению с расчетным количество алита. Кристаллы последнего характеризуются более значительными размерами. В присутствии фтора происходит весьма интенсивное улетучивание окисей калия и натрия, что также ускоряет процесс связывания СаО. Увеличение количества CaF2 в смеси как, очевидно, и других фторидов сверх 1 приводит к повышению вязкости жидкой фазы вследствие начала выкристаллизовывания из нее избыточного фторида, а также вызывает распад отдельных клинкерных минералов.

В частности, в присутствии избытка CaF2 наблюдается весьма интенсивный распад С3А на С5А3 и СаО, а также разложение алюмо - ферритной фазы. Причем эти процессы распада протекают в интервале температур 1000 - 1200 как при нагревании спекающихся сырьевых смесей, так и при охлаждении готового клинкера.

Наблюдается также ускорение разложения C3S в присутствии CaF2 ниже температур 1250 , а также более полный переход в - C2S в г - C2S. Это обстоятельство требует быстрого охлаждения клинкера, содержащего в своем составе фтористый минерализатор. Вместе с тем увеличение количества фторидов в сырьевой смеси отрицательно сказывается на стойкости футеровки в зоне спекания вращающихся печей. В результате улетучивания фторидов при высоких температурах эффективность их действия при обжиге выше 1400 понижается.

При исследовании минерализующей роли хлоридов, карбонатов, сульфатов, нитратов и фосфатов, проведенном на кафедре вяжущих веществ ЛТИ им. Ленсовета, установлено, что эффективность действия солей обусловливается как анионом, так и катионом соли. Наименьшей минерализующей способностью из исследованных солей характеризуются хлориды более эффективны из них ZnCl2, CaCl2, А1С13 , а наибольшей - сульфаты, превышающие по эффективности действия CaF2. Минерализующая роль сернокислого кальция, вводимого в сырьевые смеси в виде гипса, подробно исследована П. П. Будниковым, С. Д. Окороковым, Т. А. Рагозиной и др. В присутствии этой соли наблюдается образование повышенного количества С3S и при более низкой температуре.

При взаимодействии CaSO4 с алюминатами кальция образуется комплексное соединение состава 3 СаО - Аl2O3 - CaS04, препятствующее образованию C3A. Высвобождающаяся при этом окись кальция идет на насыщение C2S до C3S, чем и обусловливается повышенное содержание последнего в содержащих гипс смесях.

Минерализующее действие названных соединений оказывается более эффективным при температурах выше 1300 . Еще более эффективным оказывается применение многокомпонентных комбинированных минерализаторов, состоящих из смеси нескольких солей, в том числе и фтористых. Из числа других минерализаторов, показавших в лабораторных условиях хорошую минерализующую способность, следует назвать криолит, окиси марганца, бария и титана, буру, фаялит, лепидолит, сподумен и фторапатит.

Некоторые из минерализаторов, будучи легкоплавкими веществами, способствуют увеличению количества клинкерного расплава, в связи с чем их можно считать и просто плавнями. Основным же веществом - плавнем, используемым для регулирования вязкости и в меньшей степени количества жидкой фазы в клинкере является окись железа. В результате понижения вязкости жидкой фазы, увеличения ее количества и более широкого температурного интервала существования скорость реакции минералообразования и степень их завершения в клинкере в присутствии избыточного количества Fe2О3 возрастают.

Увеличить количество жидкой фазы в клинкере и понизить температуру ее образования можно также за счет введения в состав сырьевых смесей шлаков никелевой, титановой и медеплавильной промышленности8.

– Конец работы –

Эта тема принадлежит разделу:

Разработка состава быстротвердеющего портландцемента

Клинкер получается в результате обжига до спекания сырьевой смеси состава, обеспечивающего преобладание в клинкере силикатов кальция. Важнейшими технологическими операциями при получении портландцемента являются… Дробление известняка производится в две стадии с использованием для первичного дробления щековых или мощных конусных…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Экспериментальные методы определения фазовогосостава клинкера и цемента

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Характеристика проектируемого вида цемента
Характеристика проектируемого вида цемента. Портландцемент для бетонных покрытий автомобильных дорог Бетонные покрытия, автомобильных дорог и аэродромов в процессе эксплуатации испытывают большие п

Характеристика сырьевых материалов
Характеристика сырьевых материалов. Основными видами сырья, применяемого для производства портландцементного клинкера, являются известковые, мергелистые и глинистые породы. Используют

Расчет состава сырьевой смеси
Расчет состава сырьевой смеси. Сырьевыми материалами на Коркинском цементном заводе являются известняк, глина шеинская и огарки их химический состав представлен в таблице 3.1. Таблица 3.1 Хи

Оптимизация сырьевой смеси по степени обжигаемости
Оптимизация сырьевой смеси по степени обжигаемости. Состав смеси для каждого завода и минералогическая специфика сырья определяют технологические свойства сырьевых смесей водопотребность, фильтруем

Расчет минералогического состава клинкера
Расчет минералогического состава клинкера. Расчет минералогического состава портландцементного клинкера можно производить по методу В.А. Кинда. Этот метод основан на условном предположении, что кли

Определение качества цемента
Определение качества цемента. Под водопотребностью вяжущего вещества понимают то количество воды, которое необходимо ввести в него для получения теста с так называемой нормальной густотой. Н

Контроль качества сырьевой смеси и цемента
Контроль качества сырьевой смеси и цемента. Контроль на цементных заводах включает контроль качества и паспортизацию продукции и контроль технологических процессов для обеспечения оптимальны

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги