рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Выбор диапазона измерения

Выбор диапазона измерения - раздел Приборостроение, ЦИФРОВЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ От Правильного Выбора Диапазона Измерения В Значительной Мере Зависят Достове...

От правильного выбора диапазона измерения в значительной мере зависят достоверность результатов измерения (регистрации) и эффективность работы в эксперименте. Выбор нужного диапазо­на может выполняться вручную (самим пользователем) или авто­матически, благодаря логике работы прибора (микропроцессору). Если ничего не известно о возможном значении измеряемого па­раметра, необходимо, начиная измерять со старшего («грубого») диапазона, и, постепенно переходя на более чувствительный, ис­кать подходящий. Всегда нужно стремиться выбрать такой диапа­зон, на котором показания индикатора содержат максимальное число значащих цифр.

Рассмотрим вопрос выбора диапазона измерения на примере статического измерения действующего значения силы переменно­го (периодического) тока многопредельным ЦМ. Действующее значение тока на интервале экспериментов считаем неизменным. Пренебрегая методическими погрешностями, погрешностями вза­имодействия, субъективными погрешностями, оценим количе­ственно абсолютные D и относительные δ инструментальные по­грешности результатов измерения тока на всех диапазонах. При этом воспользуемся наиболее простым – детерминированным под­ходом (методом наихудшего случая), т.е. определим максимально возможные значения погрешностей при заданных условиях.

Допустим, имеем мультиметр с тремя диапазонами измерения переменного тока: первый диапазон 0... 10 А; второй 0... 1,0 А; тре­тий 0... 100 мА. Длина шкалы прибора L = 999 точек (т.е. равна трем полным десятичным разрядам) на всех диапазонах. Предположим для простоты, что класс точности прибора на всех диапазонах оди­наков и определяется предельным значением основной абсолютной погрешности:

Dп = ±(0,005 X + 0,01 Xк),

где X измеренное значение (результат измерения); Xк верхнее значение конкретного диапазона измерения.

Предположим также, что условия эксплуатации прибора в те­чение времени экспериментов нормальные, т.е. имеет место толь­ко основная инструментальная погрешность. (Если бы это было не так, то следовало бы оценить дополнительную погрешность и най­ти суммарную погрешность.)

Допустим, выполнено три эксперимента – измерены значения тока Ix в исследуемой цепи поочередно на каждом из трех диапазо­нов и получены следующие результаты:

0,06 А на диапазоне 0... 10 А;

0,062 А на втором диапазоне – 0... 1,0 А;

62,4 мА на третьем диапазоне – 0... 100 мА.

Предельное значение основной абсолютной погрешности D1 первого результата измерений может быть найдено по классу точ­ности ЦМ:

D1 = ±(0,005 · 0,06 + 0,01 · 10) = ±0,1003 А ≈ ±100 мА.

Предельные значения основных абсолютных погрешностей D2, D3 второго и третьего результатов измерений могут быть найдены соответственно:

D2 = ±(0,005 · 62 + 0,01 · 1000) = ±10,31 мА ≈ ±10 мА;

D3 = ±(0,005 · 62,4 + 0,01 · 100) = ±1,312 мА ≈ ±1,3 мА.

Предельные значения соответствующих основных относитель­ных погрешностей δ1, δ2, δ3 на каждом из трех диапазонов равны, соответственно: δ1 ≈ ±167 %; δ2 ≈ ±6 %; δ3 ≈ ±2,1 %.

Очевидно, что в данном случае для измерения такого значения тока правильнее выбрать третий диапазон (0... 100 мА), так как он обеспечивает значительно меньшую погрешность, чем на втором и тем более на первом (почти в 80 раз) диапазонах.

Корректная запись окончательного результата измерения Ix в этом примере (для диапазона 0... 100 мА) выглядит так:

Ix = 62,4 мА; D = ±1,3 мА с вероятностью рдов = 1.

Строго говоря, необходимо учитывать и другие возможные составляющие общей погрешности результата, например, по­грешность взаимодействия, которая может быть вызвана недо­статочно малым входным сопротивлением ЦМ в режиме изме­рителя тока.

Большинство современных моделей ЦМ имеют режимы как руч­ного, так и автоматического выбора диапазона (АВД) измерения (Autoranging DMM). Режим АВД позволяет оператору не заботить­ся о переключении диапазонов. Особенно это важно, когда о вход­ном измеряемом параметре не известно ничего, или, если изме­ряемый параметр в процессе наблюдения может сильно меняться (например, в 2...5 раз). Помимо очевидного удобства работы и уп­рощения использования прибора, режим АВД обеспечивает полу­чение результата с максимально достижимыми точностью и разрешающей способностью. Правда, АВД, как правило, снижает бы­стродействие прибора.

В простейшем варианте, при длине шкалы, равной целому числу десятичных разрядов, алгоритм АВД таков. Работа прибора начина­ется с включения самого старшего (грубого) диапазона, на кото­ром выполняется обычное аналого-цифровое преобразование. За­тем контроллер (микропроцессор) прибора автоматически анали­зирует содержимое старшего десятичного разряда полученного ре­зультата. Если оно равно нулю, то включается ближайший младший (более чувствительный) диапазон и выполняется новое преобразо­вание. И вновь контроллер определяет содержимое старшего разря­да. Если, предположим, он опять равен нулю, то включается следу­ющий младший (еще более чувствительный) диапазон. Таким обра­зом, контроллер прибора с АВД в этом алгоритме начиная со старше­го диапазона автоматически перебирает поочередно несколько диа­пазонов (может быть все) и останавливается на том, где результат преобразования будет содержать значащие цифры во всех разрядах (или на самом младшем при входном сигнале малого уровня).

Если сигнал в процессе циклической работы будет заметно уве­личиваться, так, что потребуется переход на соседний более стар­ший диапазон, то это произойдет по сигналу перегрузки, который формируется при переполнении счетчика АЦП. Для обеспечения устойчивости работы прибора вблизи границ диапазонов в алго­ритме работы предусмотрен обычно некоторый гистерезис (10...20%) при переходах из одного диапазона в другой.

В некоторых моделях ЦМ реализован более логичный алгоритм, при котором контроллер анализирует все разряды результата пре­образования и сразу определяет, на какой диапазон следует пере­ключить ЦМ.

 

 

– Конец работы –

Эта тема принадлежит разделу:

ЦИФРОВЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Соотношения между разрядностью АЦП длиной шкалы и разрешающей Способностью В табл... ЦИФРОВЫЕ ВОЛЬТМЕТРЫ И МУЛЬТИМЕТРЫ... Рассмотрим устройство и некоторые особенности представи телей довольно распространенного семейства ЦИП цифровых...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Выбор диапазона измерения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЦИФРОВЫЕ МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ
В практике электрических измерений все шире используются цифровые методы и средства преобразования, хранения, обработ­ки, передачи и представления информации. Цифровые инструменты активно вытесняют

Характеристики аналого-цифровых преобразователей
Наиболее важным и ответственным узлом любого цифрового средства измерений является аналого-цифровой преобразователь (АЦП) - Analog-to-Digital Converter (ADC), поскольку именно он определяет основны

Способностью
n, бит L, число точек R 0,016 (1,6%)

Методы аналого-цифрового преобразования
При построении цифрового измерительного оборудования при­меняются различные методы и средства преобразования аналого­вой информации в цифровую, отличающиеся метрологией, поме­хозащищенностью, динам

ЦИФРОВЫЕ ЧАСТОТОМЕРЫ
Начинать изучение цифровых измерительных приборов удобно и логично с рассмотрения устройства и принципа действия само­го простого и понятного по структуре и набору основных проце­дур преобразования

Режим измерения частоты
Упрощенная структура ЦЧ, реализующая режим измерения частоты, показана на рис. 6.3, а, а временные диаграммы работы в этом режиме приведены на рис. 6.3, б. Исследуемый период

Режим измерения периода
Упрощенная структура ЦЧ в режиме измерения периода приве­дена на рис. 6.7, а, а временные диаграммы – на рис. 6.7, б. В этом режиме входной периодический сигнал 1 (соотв

Выбор режима работы
При работе в широких диапазонах значений частот (или перио­да сигнала) естественно возникает вопрос, какой режим (из двух рассмотренных) целесообразно выбрать для минимизации отно­сительной погрешн

Структура цифрового вольтметра
Упрощенная структура ЦВпоказана на рис. 6.11. На вход прибора подается измеряемое напряжение U (постоянное или переменное, в частности, периодическое). Входные ц

Структура цифрового мультиметра
Цифровые мультиметры (ЦМ) - Digital MultiMeter (DMM) - это многофункциональные измерительные приборы, специально предназначенные в основном для статических измерений несколь­ких электрических (напр

Выбор приборов по метрологическим характеристикам
Если есть возможность выбрать один прибор из нескольких од­нотипных, подходящих по диапазонам измерений и основным эксплуатационным характеристикам, то, прежде всего, следует руководствоваться метр

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги