рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой

Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой - раздел Промышленность, Состав – структура – свойства цветных металлов и сплавов, полимерных материалов Названные Сплавы Характеризуются Сравнительно Невысокой Прочностью (Ненамного...

Названные сплавы характеризуются сравнительно невысокой прочностью (ненамного превышающей прочность алюминия), высокой пластичностью и коррозионной стойкостью. Их применяют в тех случаях, когда требуется высокая пластичность – для изделий, получаемых глубокой штамповкой.

К рассматриваемой группе сплавов относят сплавы систем А1 – Мn (сплавы АМц) и А1 – Mg (сплавы АМг). Они не упрочняются термической обработкой.

Хотя система А1 – Мn (см. рис. 1.10) показывает переменную растворимость соединения Al6Mn в алюминии, однако в присутствии железа (неизбежное загрязнение) образуется тройное соединение А16(Mn, Fe), а оно нерастворимо в алюминии.

Марганец, в отличие от остальных элементов, не только не ухудшает коррозионной стойкости алюминиевого сплава, но несколько улучшает ее. Поэтому сплавы А1 – Mn превосходят чистый алюминий более высокой прочностью и коррозионной стойкостью.

Марганец вводят в дюралюминий (до 1%), как и в другие алюминиевые сплавы, главным образом, для повышения коррозионной стойкости.

Сплавы А1 – Mg при содержании до 1,4% Mg не упрочняются при термической обработке, что следует из кривой растворимости в системе А1 – Mg (см. рис. 1.10). При большем содержании (Mg > 3%)
упрочнение возможно, но эффект его невелик.

Магний является полезным легирующим элементом. Не считая повышения коррозионного сопротивления (если магния не более 3%), магний уменьшает плотность алюминиевого сплава (так как он легче алюминия), повышает прочность, не снижая его пластичность. Поэтому сплавы А1 – Mg получили распространение как несколько более прочные и легкие, чем чистый алюминий.

Эти сплавы в виде листов, а также прокатанного или прессованного материала поставляются в отожженном (мягком) состоянии (в марочном обозначении тогда добавляется буква М) после небольшой степени наклепа, т. е. полунагартованные (обозначаются буквой П), и после сильного наклепа, т. е. нагартованные (обозначаются буквой Н).

Пределы прочности и относительное удлинение для сплава АМц в различном состоянии:

Состояние ..... М П Н

sв, МПа ........ 130 160 220

d, %................ 23 10 5

 

5.2. Дюралюминий и другие деформируемые сплавы, упрочняемые термической обработкой

Дюралюминий[1] – наиболее распространенный представитель группы алюминиевых сплавов, применяемых в деформированном виде и упрочняемый термической обработкой.

Он содержит 4% Сu и 0,5% Mg, а также марганец и железо.

Дюралюминий – сплав, по крайней мере, шести компонентов: Al, Cu, Mg, Mn, Si и Fe, основными добавками являются медь и магний. Поэтому указанный сплав можно причислить к сплавам системы А1 – Cu –Mg. Кремний и железо являются постоянными примесями, попадающими в сплав вследствие применения недостаточно чистого алюминия.

Перечисленные компоненты образуют ряд растворимых соединений (следовательно, вызывающих старение), таких, как CuAl2, фаза S, Mg2Si, и нерастворимых, таких, как железистые и марганцовистые соединения.

Структура дюралюминия в отожженном состоянии (рис. 1.14, а) состоит из твердого раствора и вторичных включений различных интерметаллических соединений.

После закалки с оптимальных температур (500°С) основное количество соединений CuAl2 и Mg2Si растворяется в алюминии, но соединения железа не растворяются. Поэтому в закаленном состоянии структура состоит из твердого раствора и нерастворимых включений соединений железа (на микроструктуре рис. 1.14, б включения черного цвета).

При нагреве выше 500–520°С происходит оплавление зерен по границам; при охлаждении участки жидкой фазы превращаются в эвтектику (рис. 1.14, в).

Механические свойства после окончательной термической обработки (после закалки и старения) сильно зависят от температуры закалки (рис. 1.15). В результате повышения температуры закалки происходит растворение интерметаллических соединений, после закалки получается пересыщенный твердый раствор, а после старения – более высокая прочность. Нагрев же выше определенной температуры вызывает перегрев (рост зерна, окисление и оплавление границ зерна), что приводит к катастрофическому падению прочности и пластичности. Поэтому ясно, что при термической обработке дюралюминия важно соблюдать температурный режим закалки.

При термической обработке дюралюминия колебания температур закалки не должны превышать ±3–4°С.

Кривые старения дюралюминия приведены на рис. 1.9. Дюралюминий принадлежит к алюминиевым сплавам, естественно стареющим; наиболее высокие механические свойства у нормального дюралюминия получаются после старения при комнатной температуре в течение 5-7 сут.

Термическая обработка названных сплавов заключается в закалке примерно с 500°С в воде с последующим естественным (зонным) старением, т. е. детали из этих сплавов могут быть «готовы» лишь через пять – семь дней после закалки.

Так как коррозионная стойкость дюралюминия незначительна, то изыскивали различные способы для защиты его от этого процесса. Наиболее распространенный – плакирование чистым алюминием. Плакированный дюралюминий обладает такой же коррозионной устойчивостью, как чистый алюминий.

 

Рис. 1.14. Микроструктура дюралюминия:

а – отожженное состояние, × 200; б – закаленное состояние, × 100;
в – перегретое при закалке состояние, × 200

Рис. 1.15. Механические свойства дюралюминия в закаленном и состаренном
состояниях в зависимости от температурызакалки

 

По техническим условиям толщина плакированного слоя составляет 4–8% от толщины листа (или диаметра проволокилибопрутка). Естественно, что наличие на дюралюминии менее прочного слоя из чистого алюминия ухудшает прочностные свойства полуфабриката в целом, т. е. плакированный дюралюминий несколько менее прочен, чем неплакированный.

В настоящее время производят дюралюминий нескольких марок. Состав наиболее распространенных приведен в табл. 1.2.

 

Таблица 1.2

– Конец работы –

Эта тема принадлежит разделу:

Состав – структура – свойства цветных металлов и сплавов, полимерных материалов

Белорусский государственный... технологический университет... Состав структура свойства цветных металлов и сплавов полимерных материалов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

И технология конструкционных материалов» для студентов химических и технологических специальностей
    Минск 2010 УДК 669.2/8.017:691.175

ББК 34.23я73
  © УО «Белорусский государственный технологический университет», 2010 © Вершина А. К., Свидунович Н. А., Куис Д. В., Пискунова О. Ю., 2010

Исследование зависимостей «состав – структура – свойства» для сплавов на основе алюминия
  Цель работы: изучение микроструктуры и свойств алюминия и его сплавов, установление связи между структурой, свойствами и диаграммой состояния, области применения ал

Свойства алюминия
Наиболее характерные свойства чистого алюминия – небольшая плотность (g = 2,7) и низкая температура плавления (660°С). По сравнению с железом, у которого g = 7,8, а Tпл = 1535°

А1 – Сu
Для алюминиевых сплавов медь – основной легирующий элемент, введение других легирующих элементов, кроме или вместо меди, не вносит принципиальных изменений. Диаграмма состояния Al –

Влияние состава алюминиевых сплавов на процессы, происходящие при термической обработке
  На рис. 1.9 приведены кривые, которые показывают, как изменяется твердость сплавов А1 – Сu в зависимости от содержания меди. Эффект старения, т. е. разница в твердости между свежеза

Сплавы системы А1 – Сu – Li и А1 – Mg – Li
Щелочноземельный легкий металл литий (Li) лишь недавно стали применять для легирования алюминиевых сплавов. При изучении системы А1 – Li была отмечена большая растворимость соединения LiAl в алюмин

Сплавы системы А1 – Zn – Mg
Как и магний, цинк обладает большой растворимостью при высокой температуре (400°С) и незначительной – при низкой (ниже 200°С). То же, но в еще более резкой форме характерно для соединения, именуемо

Фазы и зоны в алюминиевых сплавах
Система сплава Фазы, вызывающие эффект термической обработки Метастабильные зоны и фазы, возникающие в процессе старения Al

Al – Si
Диаграмма состояния А1 – Si приведена на рис. 1.11. Кремний не образует химических соединений с алюминием. Растворимость алюминия в кремнии очень мала, поэтому можно считать, что в системе

Деформируемые алюминиевые сплавы
  Деформируемые сплавы подразделяют на упрочняемые и не упрочняемые термической обработкой. Теоретически границей между этими сплавами должен быть предел насыщения твердого р

Состав дюралюминия
Марка Сu Mn Mg Si Fe Д1 Д16 3,8–4,8 3,8–4,5 0,4–0,8 0,3–0,9

Механические свойства дюралюминия
Марка Состояние, полуфабрикат sв, МПа s0,2, МПа % Д1 Отжиг Закалка +

Системы А1 – Zn – Mg – Сu
Сплав Полуфабрикат Режим старения после закалки при 465°С Meханические свойства sв, МПа s0

Алюминиевые сплавы для поковок и штамповок
Ряд деталей из алюминиевых сплавов изготавливают ковкой (например, лопасти винта). Кроме высоких механических свойств, от сплава требуется и хорошая пластичность в горячем состоянии. В так

Силумины и другие алюминиевые сплавы для фасонного литья
  Под группойалюминиевых сплавов, называемых силуминами, подразумевают сплавы с большим содержанием кремния. Силумины – наиболее распространенные литейные алюминиевые сплавы, ш

Химический состав (%) литейных алюминиевых сплавов
Марка сплава Mg Основные компоненты Примеси (не более) Si Mn Сu Fe

Механические свойства алюминиевых литейных сплавов
Марка сплава Вид литья Термическая обработка sв, МПа s0,2, МПа d, % Твердость

Жаропрочные алюминиевые сплавы
  Есть детали, изготавливаемые отливкой или штамповкой из алюминиевых сплавов, которые работают при температурах порядка 200–300°С и даже 350°С (например, поршень, головка цилиндра и

Механические свойства алюминиевых жаропрочных сплавов при повышенных температурах
Марка сплава sв, МПа, при температуре, °С d, при температуре, °С

На основе меди
  Цель работы: изучение микроструктуры и свойств меди и ее сплавов, установление связи между структурой, свойствами и диаграммой состояния, области применения меди и

Свойства меди
  Медь – металл красновато-розового цвета, имеющий кристаллическую ГЦК решетку с периодом а = 0,3608 нм, без полиморфных превращений. Медь менее тугоплавка, че

Механические свойства технической меди M1
Состояние sв, МПа s0,2, МПа d, % y,% НВ KCU, МДж/м2

Механические свойства и область применения
литейных латуней (ГОСТ 17711-93) Марка латуни sв, МПа d, % НВ Область применения

Оловянные бронзы
Из диаграммы состояния Сu – Sn следует, что предельная растворимость олова в меди соответствует 15,8% (рис. 2.4, а). Сплавы этой системы характеризует склонность к неравновесной кри

Химический состав и механические свойства оловянных бронз
Марка бронзы Sn Pb Zn Прочих элементов Е, ГПа sв s0,2

Исследование зависимостей «состав-структура-свойства» для полимерных материалов
  Цель работы: пластмассы, виды, классификация, исследование некоторых физико-механических свойств пластмасс, приобретение практических навыков определения их твердос

Краткая характеристика свойств и областей применения некоторых пластмасс
К термопластичным пластмассам, основой или связующим веществом в которых являются полимеры с макромолекулами линейной или разветвленной структуры, относятся: – неполярные: полиолефины (пол

Некоторые физико-механические свойства пластмасс
Характеристика Полиэтилен Полипропилен Полистирол Фторопласт Полиметил метакрилат Полиамиды

Полимерных материалов
  Лабораторный практикум   Редактор Компьютерная верстка   Подписано в печать 2010. Формат 60×84 1/16

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги