рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

А1 – Сu

А1 – Сu - раздел Промышленность, Состав – структура – свойства цветных металлов и сплавов, полимерных материалов Для Алюминиевых Сплавов Медь – Основной Легирующий Элемент, Введение Д...

Для алюминиевых сплавов медь – основной легирующий элемент, введение других легирующих элементов, кроме или вместо меди, не вносит принципиальных изменений.

Диаграмма состояния Al – Сu приведена на рис. 1.1.

Диаграмма состояния двойного сплава, компоненты которого образуют между собой твердые растворы с ограниченной растворимостью эвтектического типа, эвтектика содержит 33% Сu и состоит из
a-твердого раствора Cu в Al и упрочняющей фазы CuAl2.

Как видно из рис. 1.1, при комнатной температуре медь растворяется в алюминии в количестве около 0,2%, а максимальная растворимость при эвтектической температуре 548°С равна 5,7%. Любой сплав, содержащий до 5,7% Сu, можно перевести в однофазное
a-состояние соответствующим нагревом. Это состояние фиксируется быстрым охлаждением – закалкой.

На изменении растворимости соединения CuAl2 в a-твердом алюминиевом растворе основана упрочняющая термическая обработка в А1 – Сu сплавах.

Рис. 1.1. Диаграмма состояния Al – Cu

 

Термическая обработка алюминиевых сплавов состоит из двух циклов – закалки и старения.

Теоретические вопросы, связанные с закалкой алюминиевых сплавов, относительно просты: в процессе закалки фиксируется пересыщенный твердый раствор. Важно, чтобы охлаждение было достаточно быстрым.

Необходимая скорость охлаждения при закалке определяется скоростью выпадения избыточных фаз из переохлажденного и пересыщенного твердого раствора. Для этой цели строят диаграммы изотермического превращения переохлажденного твердого раствора
(С-образные диаграммы для сплавов Al + 4% Сu; и Al + 4% Zn – рис. 1.2). Согласно диаграмме максимальная скорость превращения наблюдается вблизи температуры 300°С.

Рис. 1.2. Диаграмма изотермического распада переохлажденного твердого раствора в алюминиевых сплавах (указано начало распада):

1 – А1 + 4% Сu + 1,5% Mg; 2 – Al + 4% Zn + % Mg

Полученный после закалки твердый раствор является пересыщенным при содержании в нем меди более 0,2%. В таком пересыщенном и неустойчивом твердом растворе происходят изменения, в конечном итоге приводящие к выделению фазы CuAl2 и сохранению в растворе лишь соответствующего равновесной системе количества меди (0,2%). Этот процесс называется старением.

Названный процесс может происходить при комнатной температуре – естественное старение, если при повышении температуры – искусственное старение.

Микроструктура иллюстрирует и объясняет фазовые изменения, вызванные закалкой (рис. 1.3).

 

 

Рис. 1.3. Структура сплава А1 + 4% Сu:

а, б – структура отожженного сплава Al + 4% Сu – на фоне алюминиевого
твердого раствора (почти чистого алюминия) видны включения CuAl2 (а – × 900;
б – × 120); в – микроструктура того же сплава после закалки – гомогенный
твердый раствор, нагрев до температуры закалки привел к полному растворению включений CuAl2, а быстрое охлаждение при закалке зафиксировало
пересыщенный твердый раствор (× 100)

 

Старение существенно изменяет свойства сплава Al – Сu:

- в отожженном состоянии сплав Al + 4% Сu имеет предел прочности sв = 200 МПа;

- в свежезакаленном состоянии (т. е. при испытании сразу после закалки) предел прочности несколько повышается sв » 250 МПа;

- после старения предел прочности возрастает значительно и достигает 400 МПа.

При естественном старении (20°С) прочность становится максимальной через 4–5 сут после закалки, причем скорость упрочнения в первые часы значительно меньше, чем в последующие, но затем интенсивность упрочнения убывает. Типичный ход кривой упрочнения при естественном старении показан на рис. 1.4.

Рис. 1.4. Изменение прочности при естественном старении алюминиевого сплава:

1 – закаленное состояние; 2 – отожженное

 

Начальный период, характеризующийся отсутствием или весьма слабым повышением прочности, называется инкубационным.

Инкубационный период имеет важное технологическое значение, так как в этот момент сплав обладает большой способностью к пластической деформации и закаленные детали можно подвергать разнообразным технологическим операциям, связанным с деформацией (расклепке заклепок, гибке, отбортовке и т. д.). Через 2–3 ч способность пластически деформироваться начинает резко уменьшаться и эти операции становятся неосуществимыми.

При искусственном старении его скорость сильно зависит от температуры (рис. 1.5):

– повышение температуры ускоряет процесс,

– получаемая максимальная прочность тем ниже, чем выше температура старения,

– в результате старения при температуре выше 150°С явно отмечается разупрочнение сплава при выдержке более той, которая вызывает максимальное упрочнение, и тем скорее, чем выше температура.

– при температурах, ниже комнатной, старение замедляется и при -50°С можно считать, что закаленное состояние практически устойчиво и старение не происходит.

Рис. 1.5. Кривые старения дюралюминия при различных температурах

Естественно состаренное состояние сплава является неустойчивым. Если недолго выдержать подвергнутый естественному старению алюминиевый сплав при 200–250°С, то он разупрочняется. Выделившиеся дисперсные частицы избыточной фазы растворятся и сплав получит свойства, характерные для свежезакаленного состояния, так как он вновь приобретет способность к естественному старению (рис. 1.6). Это явление (т. е. возвращение к свежезакаленному состоянию после кратковременного нагрева) называется возвратом.

При старении сплава А1 – Сu протекают следующие процессы.

Вторая фаза (т. е. выделения из твердого раствора) отчетливо обнаруживается после искусственного старения при температуре выше 200°С (рис. 1.7), когда сплав не имеет максимальной прочности.

 

Рис. 1.6. Кривые старения после возврата к свежезакаленному
состоянию (кратковременный нагрев при 230°С)

Рис. 1.7. Структура сплава А1 + 4% Сu, закаленного и искусственно
состаренного при 250ºС, × 900

 

Рентгеноструктурный анализ показывает, что, когда сплав при естественном старении достигает максимальной прочности, избыточная фаза в обычном смысле отсутствует и упрочнение не связано с распадом твердого раствора.

Современные представления о механизме старения, подтверждаемые особым методом рентгеноструктурного анализа и просвечивающей электронной микроскопией, таковы:

– в процессе естественного старения происходят подготовительные к выделению процессы, само же выделение может совершиться лишь при более высоких температурах, обеспечивающих достаточную скорость атомных перемещений (диффузии).

– в начальный период старения (первая стадия старения) в пересыщенном твердом растворе атомы меди, расположенные в свежезакаленном сплаве в случайных местах, собираются в определенных местах кристаллической решетки, в результате внутри кристалла образуются зоны повышенной концентрации растворенного компонента – Cu, их называютзоны Гинье Престона (зоны Г. – П.);

– атомы меди на этой стадии старения из раствора не выделяются, поэтому среднее значение параметра решетки не изменяется;

– однако в местах повышенной концентрации второго компонента – Cu параметр иной, чем в обедненны, это создает большие напряжения в кристалле и дробит блоки мозаики, что и приводит к повышению твердости;

– содержание меди в зонах Г. – П. повышенное, но еще не отвечает формуле CuAl2;

– зоны Г. – П. представляют собой тонкие пластинчатые, дискообразные образования толщиной в несколько атомных слоев и протяженностью в несколько десятков атомных слоев (рис. 1.8, а). Указываются такие размеры: толщина – 0,5–1 нм, диаметр 4–10 нм;

– дальнейшее развитие процесса старения заключается в увеличении зон (толщина их достигает 1–4 нм, диаметр 20–30 нм) и повышении содержания в них меди до стехиометрического соотношения фазы CuAl2; принято первые маленькие зоны называть зонами Г. – П.-1, а вторые большие – зонами Г. – П.-2; процесс старения, связанный с образованием зон Г. – П., называют также зонным старением, отмечая тем самым отличие от следующей стадии старения – фазовое старение;

– после образования зон Г. – П.-2 повышение температурыили увеличение выдержки при повышенных температурах, например 100°С, приводит к преобразованию зон Г. – П.-2 в фазу, обозначаемую через q'. Это уже выделения, т. е. новая фаза, которая имеет отличную от твердого раствора и от стабильной q-фазы (CuAl2) решетку, когерентно связанную с матричным твердым раствором (рис. 1.8, б);

– при дальнейшем повышении температуры q'-фаза превращается в стабильную q-фазу (СuАl2) и происходит ее коагуляция (рис. 1.8, в).

 

а б в

Рис. 1.8. Типы выделений из пересыщенного твердого раствора:

а – зона Г. – П.; 1 – атомы растворителя Al; 2 – растворенные атомы Cu;

б – кристаллы метастабильной фазы q'(когерентное выделение);

в – кристаллы стабильной фазы q (некогерентное выделение)

 

Таким образом, процесс старения включает три стадии:

свежезакаленный сплав ® зоны Г. – П. (Г. – П.-1 – Г. – П.-2) ® q' ® q.

– Конец работы –

Эта тема принадлежит разделу:

Состав – структура – свойства цветных металлов и сплавов, полимерных материалов

Белорусский государственный... технологический университет... Состав структура свойства цветных металлов и сплавов полимерных материалов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: А1 – Сu

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

И технология конструкционных материалов» для студентов химических и технологических специальностей
    Минск 2010 УДК 669.2/8.017:691.175

ББК 34.23я73
  © УО «Белорусский государственный технологический университет», 2010 © Вершина А. К., Свидунович Н. А., Куис Д. В., Пискунова О. Ю., 2010

Исследование зависимостей «состав – структура – свойства» для сплавов на основе алюминия
  Цель работы: изучение микроструктуры и свойств алюминия и его сплавов, установление связи между структурой, свойствами и диаграммой состояния, области применения ал

Свойства алюминия
Наиболее характерные свойства чистого алюминия – небольшая плотность (g = 2,7) и низкая температура плавления (660°С). По сравнению с железом, у которого g = 7,8, а Tпл = 1535°

Влияние состава алюминиевых сплавов на процессы, происходящие при термической обработке
  На рис. 1.9 приведены кривые, которые показывают, как изменяется твердость сплавов А1 – Сu в зависимости от содержания меди. Эффект старения, т. е. разница в твердости между свежеза

Сплавы системы А1 – Сu – Li и А1 – Mg – Li
Щелочноземельный легкий металл литий (Li) лишь недавно стали применять для легирования алюминиевых сплавов. При изучении системы А1 – Li была отмечена большая растворимость соединения LiAl в алюмин

Сплавы системы А1 – Zn – Mg
Как и магний, цинк обладает большой растворимостью при высокой температуре (400°С) и незначительной – при низкой (ниже 200°С). То же, но в еще более резкой форме характерно для соединения, именуемо

Фазы и зоны в алюминиевых сплавах
Система сплава Фазы, вызывающие эффект термической обработки Метастабильные зоны и фазы, возникающие в процессе старения Al

Al – Si
Диаграмма состояния А1 – Si приведена на рис. 1.11. Кремний не образует химических соединений с алюминием. Растворимость алюминия в кремнии очень мала, поэтому можно считать, что в системе

Деформируемые алюминиевые сплавы
  Деформируемые сплавы подразделяют на упрочняемые и не упрочняемые термической обработкой. Теоретически границей между этими сплавами должен быть предел насыщения твердого р

Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой
Названные сплавы характеризуются сравнительно невысокой прочностью (ненамного превышающей прочность алюминия), высокой пластичностью и коррозионной стойкостью. Их применяют в тех случаях, когда тре

Состав дюралюминия
Марка Сu Mn Mg Si Fe Д1 Д16 3,8–4,8 3,8–4,5 0,4–0,8 0,3–0,9

Механические свойства дюралюминия
Марка Состояние, полуфабрикат sв, МПа s0,2, МПа % Д1 Отжиг Закалка +

Системы А1 – Zn – Mg – Сu
Сплав Полуфабрикат Режим старения после закалки при 465°С Meханические свойства sв, МПа s0

Алюминиевые сплавы для поковок и штамповок
Ряд деталей из алюминиевых сплавов изготавливают ковкой (например, лопасти винта). Кроме высоких механических свойств, от сплава требуется и хорошая пластичность в горячем состоянии. В так

Силумины и другие алюминиевые сплавы для фасонного литья
  Под группойалюминиевых сплавов, называемых силуминами, подразумевают сплавы с большим содержанием кремния. Силумины – наиболее распространенные литейные алюминиевые сплавы, ш

Химический состав (%) литейных алюминиевых сплавов
Марка сплава Mg Основные компоненты Примеси (не более) Si Mn Сu Fe

Механические свойства алюминиевых литейных сплавов
Марка сплава Вид литья Термическая обработка sв, МПа s0,2, МПа d, % Твердость

Жаропрочные алюминиевые сплавы
  Есть детали, изготавливаемые отливкой или штамповкой из алюминиевых сплавов, которые работают при температурах порядка 200–300°С и даже 350°С (например, поршень, головка цилиндра и

Механические свойства алюминиевых жаропрочных сплавов при повышенных температурах
Марка сплава sв, МПа, при температуре, °С d, при температуре, °С

На основе меди
  Цель работы: изучение микроструктуры и свойств меди и ее сплавов, установление связи между структурой, свойствами и диаграммой состояния, области применения меди и

Свойства меди
  Медь – металл красновато-розового цвета, имеющий кристаллическую ГЦК решетку с периодом а = 0,3608 нм, без полиморфных превращений. Медь менее тугоплавка, че

Механические свойства технической меди M1
Состояние sв, МПа s0,2, МПа d, % y,% НВ KCU, МДж/м2

Механические свойства и область применения
литейных латуней (ГОСТ 17711-93) Марка латуни sв, МПа d, % НВ Область применения

Оловянные бронзы
Из диаграммы состояния Сu – Sn следует, что предельная растворимость олова в меди соответствует 15,8% (рис. 2.4, а). Сплавы этой системы характеризует склонность к неравновесной кри

Химический состав и механические свойства оловянных бронз
Марка бронзы Sn Pb Zn Прочих элементов Е, ГПа sв s0,2

Исследование зависимостей «состав-структура-свойства» для полимерных материалов
  Цель работы: пластмассы, виды, классификация, исследование некоторых физико-механических свойств пластмасс, приобретение практических навыков определения их твердос

Краткая характеристика свойств и областей применения некоторых пластмасс
К термопластичным пластмассам, основой или связующим веществом в которых являются полимеры с макромолекулами линейной или разветвленной структуры, относятся: – неполярные: полиолефины (пол

Некоторые физико-механические свойства пластмасс
Характеристика Полиэтилен Полипропилен Полистирол Фторопласт Полиметил метакрилат Полиамиды

Полимерных материалов
  Лабораторный практикум   Редактор Компьютерная верстка   Подписано в печать 2010. Формат 60×84 1/16

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги