рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Структурные составляющие системы железо-углерод

Структурные составляющие системы железо-углерод - раздел Промышленность, Диаграмма состояния железоуглеродистых сплавов Твердые Растворы Внедрения Углерода И Других Примесей В A-Железе Называют Фер...

Твердые растворы внедрения углерода и других примесей в a-железе называют ферритом, а в g-железе – аустенитом.

Феррит получил свое название от латинского наименования железа – «Ferrum». Различают низкотемпературный a-феррит с растворимостью углерода до 0,02 % и высокотемпературный d-феррит с предельной растворимостью углерода 0,1 %. Атом углерода в решетке феррита располагается в центре объема куба. Под микроскопом феррит выявляется в виде однородных полиэдрических зерен. Твердость и механические свойства феррита близки к таковым технически чистого железа (sв = 250 МПа, s0,2 = 120 МПа, d = 50 %, y = 80 %, НВ 80 – 90 кгс/мм2 или 800 – 900 МПа), они зависят от количества элементов, присутствующих в нем (многие химические элементы образуют с ферритом твердые растворы замещения). Микроструктура феррита представлена на рис.2

 

 

Рис.2 Микроструктура феррита

 
 

Аустенит был назван так в честь английского ученого Роберта Аустена, который занимался исследованиями структуры составляющих системы железо - углерод и разработкой вариантов ее диаграммы состояния. Атом углерода в решетке g-железа располагается в центре элементарной ячейки (рис. 3,б).

а б

Рис.3. Кристаллическая решетка феррита (а) и аустенита (б)

 

Аустенит – парамагнитен, высокопластичен (НВ = 170 – 220 кгс/мм2 или 1700 – 2200 МПа), имеет низкие механические характеристики, такие как пределы текучести и Аустенит – парамагнитен, высокопластичен (НВ = 170 – 220 кгс/мм2 или 1700 – 2200 МПа), имеет низкие механические характеристики, такие как пределы текучести и прочности. Микроструктура аустенита - полиэдрические зерна (рис.4).

 

 

Рис.4 Микроструктура аустенита

 

Железо и углерод, взаимодействуя друг с другом, могут образовывать ряд металлических карбидов с различными химическими формулами: Fе3С, Fе2С, FеС и другие. Наиболее распространенным и широко применяемым из них является карбид железа среднего состава Fе3С – цементит. Стехиометрическое соотношение элементов в нем соответственно равно 3 : 1. Содержание углерода составляет 6,67 % масс.

Кристаллическая решетка карбида железа очень сложная. Она представляет собой орторомбическую структуру с плотной упаковкой атомов (в элементарной ячейке расположено 12 атомов железа и 4 углерода). Характер связи между атомами железа чисто металлический, а между железом и углеродом ионно-металлический с преобладанием металличности. Такое строение приводит к тому, что он проявляет металлические признаки: блеск, высокая электропроводность, уменьшающаяся с повышением температуры, легкость образования твердых растворов с металлами.

Данное соединение обладает высокой твердостью, сравнимой только с алмазом, он легко царапает стекло (НВ более 800 кгс/мм2), но чрезвычайно низкой практически нулевой пластичностью (большой хрупкостью), значительной жаропрочностью и обычно более высокой температурой плавления, чем исходный металл.

Кроме перечисленных фаз, в структуре сплавов железа с углеродом присутствуют две структурные составляющие: эвтектика и эвтектоид.

В системе железо – углерод эвтектика содержит 4,3 % С и кристаллизуется при температуре 1147ºC. Она представляет собой смесь кристаллов аустенита и цементита и называется ледебурит (в честь австрийского ученого-металлурга Ледебура).

Л = А + Ц.

 

Ледебурит - образуется в процессе эвтектического превращения по реакции

 

Ж = g + Fe3C

 

По своей структуре он представляет собой чередующиеся пластинки аустенита и цементита. При температурах ниже 727°С аустенит в этой смеси изотермически превращается в перлит. Ледебурит такого состава называется низкотемпературным. Микроструктура ледебурита представлена на рис.5.

 

Рис.5 Микроструктура ледебурита

Перлит –смесь пластин феррита и цементита образующаяся при 727°С. по реакции

А= a + Fe3C,

 

Он имеет перламутровый цвет (отсюда и название), концентрация углерода в нем -0,8 % масс. Структура его также как и ледебурита состоит из следующих друг за другом пластинок феррита и цементита.

Перлит имеет наиболее удачное сочетание механических свойств из всех равновесных структур в сплавах железа с углеродом. В нем мягкие, вязкие пластины феррита чередуются с прочными, твердыми, жесткими пластинами цементита: П = Ф + Ц (рис. 6). Такая структура хорошо сопротивляется самым разным механическим нагрузкам, обладает высокой прочностью и достаточной вязкостью. Твердость перлита составляет 180-220 HB, в зависимости от размера зерна.

 

 

 

Рис.6 Микроструктура перлита и цементита вторичного.

 

1.3 Диаграмма состояния железо – цементит

 

Диаграмму системы железо-углерод можно проанализировать только до образования в ней карбида железа - Fе3С – концентрация углерода 6,67 %. Это связано с тем, что наибольшее практическое значение имеет только часть диаграммы состояния железо-углерод, в которой показано формирование цементита, так как сплавы, содержащие большее количество углерода, очень хрупкие и практически не применяются в промышленности. Поэтому диаграмму состояния системы железо-углерод изображают только до концентрации углерода 6,67 % масс и называют диаграммой состояний железо-цементит (рис.7).

 

Рис. 7. Диаграмма железо-углерод

 

Кривая АВСD - линия ликвидус, которая на участке АВ соответствует температурам начала выпадения кристаллов феррита (a), а на участке ВС соответствует температурам начала выпадения кристаллов аустенита (g) из жидкого сплава (L). В области СD – она представляет геометрическое место точек, отвечающих температурам начала кристаллизации первичного цементита (Fe3СI) из жидкой фазы (L).

Линия АHJЕСFD - солидус, криволинейный участок АHJЕ которой, определяет окончание затвердевания жидкой фазы.

На горизонтальной линии HJВ происходит нонвариантная реакция с участием трех фаз образования аустенита из жидкости и феррита.

LB + aH ® gj

Горизонтальный участок ECF является геометрическим местом точек, соответствующих также концу кристаллизации аустенита (ЕС) и первичного цементита - Fe3CI (CF), и одновременно отвечает температурам изотермического превращения жидкого сплава состава точки С в двухфазную эвтектику – ледебурит.

LC ® gЕ + Fe3CF.

Данная реакция наблюдается только у сплавов с содержанием углерода более 2,14 % масс.

На горизонтальной линии PSK происходит нонвариантная реакция с участием трех фаз образования перлита из аустенита.

gS ® aP + Fe3CK

 

Линии NH и NJ отражают начало и конец полиморфного превращения аустенита и d-феррита, а линии GS и GP соответственно начало и конец полиморфного превращения аустенита и a-феррита.

Кривые DC, ES и PQ показывают на ограничение максимальной растворимости углерода в фазовых составляющих железоуглеродистых сплавов. Эти линии определяют максимальную растворимость углерода в той фазе, которая расположена на диаграмме левее данной кривой. Это значит, что DC характеризует предельную концентрацию углерода в жидкости; ES в аустените g; PQ в феррите a. При понижении температуры системы меньше точек растворимости углерода из фазы, находящейся слева от соответствующей им кривой, выделяется избыток углерода, образуя цементит первичный, вторичный и третичный соответственно.

Диаграмму состояния Fе - Fе3С по оси абсцисс – концентрация углерода – делят на следующие участки:

0 - 0,02 % (точка Р)- технически чистое железо;

0,02 - 0,80 % (отрезок PS) - доэвтектоидные стали;

0,80 % (точка S) - эвтектоиднаясталь;

0,80 - 2,14 % - заэвтектоидные стали;

2,14 - 4,31 % (отрезок EC) - доэвтектические чугуны;

4,31 % (точка С) - эвтектический чугун;

4,31 - 6,67 % (отрезок CF) - заэвтектические чугуны.

Железоуглеродистые сплавы с содержанием углерода до 2,14 %, называют сталями. Они после затвердевания не содержат хрупкой структурной составляющей - ледебурита и при высоком нагреве имеют только аустенитную структуру, обладающую высокой пластичностью. Поэтому они легко деформируются при нормальных и повышенных температурах, т. e. являются ковкими сплавами.

 

– Конец работы –

Эта тема принадлежит разделу:

Диаграмма состояния железоуглеродистых сплавов

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... САМАРСКИЙ ГОСУДАРСТВВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Структурные составляющие системы железо-углерод

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Диаграмма состояния железоуглеродистых сплавов
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых бо

Компоненты в диаграмме железо- углерод
Компонентами в сплавах железа с углеродом являются металл железо и неметалл углерод. В промышленности чистое железо практически не используется, а наиболее широко применяются его сплавы. О

Кристаллизация стали
Первичная кристаллизация стали в зависимости от содержания углерода происходит по-разному. При содержании углерода от 0 до 0,5% из жидкости начинает выделяться феррит, а при содержании углерода от

Влияние постоянных примесей на структуру с свойства стали.
К постоянным примесям относятся Mn, Si, S, P и газы O, N, H. Верхний предел присутствия S, P ограничивается 0,05%, Mn, Si – 0,08%. Марганецвводят в сталь для раскисления, т.е

Влияние углерода на свойства стали
Углерод – не случайная примесь, а важнейший компонент углеродистой стали, от количества которого завичсят ее свойства.

Применение сталей
Конструкционные углеродистые стали. На долю углеродистых сталей приходится 80% от общего объема производства стали. Эти стали дешевы и сочетают удовлетворительные механические свой

Структура, свойства и применение чугунов
Чугуны – это сплавы на основе железа, содержащие от 2 до 5 % углерода, а также марганец, кремний и вредные примеси. Это литейный и передельный материал. Допустимые кол

Виды термической обработки металлов.
Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка. Основы термической обработки разра

Закалка
Закалка – термообработка, которая проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышения твердости и прочности путем образования не

Старение
  Старение - термообработка, которая применяется к сплавам, которые были подвергнуты закалке без полиморфного превращения. Пересыщенный твёрдый раствор в таких сплавах термодин

Химико-термическая обработка
Химико-термической обработкой называют процессы, приводящие к диффузионному насыщению поверхностного слоя различными элементами. Химико-термическая обработка включает в себя одновременное

Термомеханическая обработка
Термомеханическая обработка – вид термической обработки, включающий в себя операцию пластической деформации, которая создавая повышенную плотность дефектов кристаллического строения, влияет тем

Основные фазовые превращения при термообработке стали
  Основой для изучения термической обработки стали является диаграмма железо – углерод (область сталей). При рассмотрении разных видов термообработки железо-углеродистых спла

Четыре основных превращения при термической обработке в стали
При термической обработке стали наблюдаются следующие превращения:   1. Превращение перлита в аустенит, протекающее выше точки А1. α

Превращение аустенита в перлит
При охлаждении стали с содержанием углерода 0,8% ниже А1 происходит распад аустенита с содержанием углерода 0,8% на феррит с содержанием 0,01%С и цементит с содержанием углерода 6,67%. В

Превращения мартенсита в перлит при отпуске
  Отпуском называют термическую операцию, заключающуюся в нагреве закаленной стали до температуры ниже Аc1, с последующей выдержкой и охлаждением с заданной скоростью. В пр

Отжиг стали
Отжиг стали– термическая обработка, заключающаяся в нагреве металла до определенной температуры, выдержки и охлаждении с отключенной печью (т.е. с минимально возможной скоростью

Отжиг доэвтектоидной стали.
Для доэвтектоидной стали применяют следующие виды отжига: -полный; -изотермический; -нормализация; -патентирование.  

Отжиг заэвтектоидной стали.
Для заэвтектоидной стали применяют неполный отжиг и нормализацию. Неполный отжиг.Заэвтектоидные стали подвергают неполному отжигу, так как полный отжиг приводит к появлени

Закалка стали
Закалка – это термическая операция, которая заключается в нагреве сплава до температуры выше критических точек и охлаждении с высокой скоростью. В зависимости от того происходит ли

Отпуск стали.
Закаленная сталь очень твердая, но она хрупкая, у нее низкая пластичность и большие внутренние напряжения. В таком состоянии изделие не работоспособно, не надежно в эксплуатации. Поэтому для уменьш

Способы закалки стали.
Выбор того или иного способа охлаждения при закалке определяется во-первых получением наибольшей прокаливаемости и во-вторых минимальным уровнем остаточных внутренних напряжений, чтобы уменьшить ко

Обработка стали холодом.
Обработку стали холодом применяют для уменьшения количества остаточного аустенита в закаленных высокоуглеродистых сталях. При охлаждении до -70..-1900С остаточный аустенит превращается в

Закалка с самоотпуском.
При сквозной прокаливаемости все точки детали имеют практически одинаковую твердость. Однако, для ударного инструмента типа зубил, долот, штампов необходимо иметь высокую твердость рабочей поверхно

Поверхностная закалка
  Для некоторых деталей при эксплуатации необходима высокая твердость и износостойкость поверхности в сочетании с хорошей вязкостью в сердцевине. Это касается деталей, работающих в ус

Прокаливаемость и закаливаемость стали.
Прокаливаемость важнейшая характеристика стали, определяющая выбор марки стали в зависимости от размеров закаливаемой заготовки. Закаливаемость стали характеризует твердость правильно зака

Термомеханическая обработка стали.
Термомеханическая обработка включает в себя пластическую деформацию, которая влияет на формирование структуры во время термического воздействия на металл. Пластическая деформация изменяет характер

Цементация
Цементацией называется процесс насыщения поверхностного слоя стали углеродом с целью повышения работоспособности деталей металлургических машин (всевозможные шестерни, зубчатые муфты и втулки, паль

Азотирование
Азотированием называется ХТО, при которой поверхностный слой детали насыщается азотом. Процесс осуществляется в атмосфере аммиака, который при нагревании разлагается. При этом увеличиваются не толь

Нитроцементация
Нитроцементацией называют процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при 840 – 860°С в газовой среде, состоящей из науглероживающего газа и амм

Цианирование
Цианированием называют также совместное насыщение поверхности стали углеродом и азотом вследствие окисления расплавленных цианистых солей при нагревании до 820 – 960 °С. Для получения слоя

Сульфоазотирование
Сульфоазотирование применяют для улучшения приработки, повышения износостойкости и противозадирных свойств, особенно при «сухом» и «полусухом» трении, применяют сульфоазотирование, т. е. одновремен

Борирование
Борирование стали - химико-термическая обработка насыщением поверхностных слоев стальных изделий бором при температурах 900...950°С. Цель борирования - повышение твердости, износостойкости и некото

Силицирование
Силицирование - поверхностное или объёмное насыщение материала кремнием. Силицирование производится обработкой материала в парах кремния, образующихся при высокой температуре над кремниевой засыпко

Диффузионное насыщение металлами
Насыщение поверхности стали металлами в ходе их высокотемпературной химико-термической обработки в соответствующих насыщающих средах называется диффузионной металлизацией. Целью такого вида химико-

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги