рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Расчет контура регулирования скорости

Расчет контура регулирования скорости - Автоматизированный электропривод многоканатной подъемной установки Расчет Контура Регулирования Скорости. Максимальное Значение Приращения Движу...

Расчет контура регулирования скорости. Максимальное значение приращения движущего усилия Fст max определяют из условия: Fст max  0,1F1=0,1339400=33,94 кН, (3.24) где F1 - движущее усилие, равное статическому в начальный момент времени, Н. Решение: Примем максимальное значение движущего усилия, при котором в замкнутой системе регулирования скорость не должна изменится более, чем на 1%: Vmax=0,0116=0,16 м/с. (3.25) 3.4.2. Абсолютное значение статической ошибки в замкнутой системе управления Vа определим по формуле: (3.26) где ас=2 - параметр настройки регулятора скорости [3]; Тс=а2т(Т+Тфт)+Тф с=4(0,02+0,0125)+0,02=0,15 с - эквивалентная не компенсируемая постоянная времени контура скорости, с; ат=2 - параметр настройки регулятора тока [3]; Т=0,02с - постоянная времени тиристорного преобразователя [3]; Тфт - постоянная времени фильтра на входе датчика тока, с; - постоянная времени фильтра на входе датчика скорости, с; К=3 - кратность уменьшения пульсации напряжения тахогенератора [3]; - частота полюсных пульсаций тахогенератора, Гц; КК, КV - заданные величины; Тм - электромеханическая постоянная времени электропривода, с; m, R - ранее рассчитанные величины. 3.4.3. Относительное значение статической ошибки при установившемся режиме в замкнутой системе определим по формуле: V%=(Va/Vmax)100% =(0,054/16)100=0,34  1%. (3.27) 3.4.4. Время регулирования определили по формуле: (3.28) где =0,03 - допустимая динамическая ошибка по скорости 3; Vmax - максимальная скорость движения подъемных сосудов, м/с; аmax - максимальное ускорение в период разгона и замедления, м/с2. 3.4.4. Масштаб времени Z определили по формуле: Z=tрег/tнор=3/6=0,5 с, (3.29) где tнор=6 с - нормированное время переходного процесса [3]. Принимаем график переходного процесса для параметров Z=0,5, т=0,15 5. 3.4.5. Параметры настройки двухкратноинтегрирующего контура скорости определяем из условия равенства выражений: всас2ат22=2,5Z2; всасат=2,5Z. (3.30) Отсюда вс=2,5; ас=Z/(ат)=0,5/(2 0,15)=1,7. (3.31) Решение: Приняли структурную и функциональную схемы контура регулирования скорости (рис.3.3) 3.4.6. Коэффициент обратной связи по скорости рассчитали по формуле: (3.32) где Rзс=Rс; Uдс - напряжение, В, снимаемое с датчика скорости при скорости подъема Vmax, м/с. Используем ячейку датчика напряжения ДН-2АИ (УБСР-АИ), и присоединим его вход к выходу тахогенератора с помощью делителя напряжения Rд и Rд. Принять Uдс= Vmax 3. 3.4.7. Напряжение, снимаемое с тахогенератора, определили по формуле: (3.33) где Uтг ном - номинальное напряжение тахогенератора, В; nтг ном - номинальная частота вращения тахогенератора, об/мин; nдв ном - номинальная частота вращения двигателя, об/мин. 3.4.8. Полное сопротивление делителя напряжения определим по формуле: Rд=Uтг/Iтг ном=149,5/0,1=1,5 кОм, (3.34) где Iтг ном - номинальный ток тахогенератора, А. 3.4.9. Мощность резисторов: Pд=UтгIтг ном=149,50,1=14,95 Вт. (3.35) (3.36) Условие согласования: Rд =2400/10=240 Ом, (3.37) где Rвх д=2,4кОм - входное сопротивление датчика ДН-2АИ(УБСР-АИ) Передаточная функция ПИ-регулятора скорости имеет вид: (3.38) 3.4.10. Параметры ПИ-регулятора скорости: (3.39) Условие жесткости подъемных канатов: так как Кпс10 необходимо принять демпфирующий коэффициент (3.40) где Кпс=10 [3]. 3.4.11. Постоянная времени интегральной части ПИ-регулятора скорости: (3.41) Применим ячейку регулятора скорости РС-1АИ (УБСР-АИ). 3.4.12. Входные сопротивления регулятора скорости (Сос=2мкФ): Rзс=Rс=Тис/Сос=0,03/(210-6)= 15 кОм. (3.42) 3.4.13. Сопротивление обратной связи регулятора скорости: Rос=RзсКпс=1500021,4=321 кОм. (3.43) 3.4.14. Параметры фильтра на входе регулятора скорости: Тф=всасТс=2,5&am p;#61655;1,70,15=0,64 с; (3.44) Сфс=Тф/(0,5Rзс)=0,64/(0,5&am p;#61655;15000)=0,85 мкФ. (3.45) 4.

– Конец работы –

Эта тема принадлежит разделу:

Автоматизированный электропривод многоканатной подъемной установки

Расчет этих параметров и выбор соответствующих изделий - задача проектирования механической части ШПУ. Технические решения, принятые по механической… Этим завершается первый этап проектирования автоматизированного… На основе технических решений, принятых на первом и втором этапах проектирования, выбирают регуляторы тока, скорости и…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Расчет контура регулирования скорости

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Выбор скипа
Выбор скипа. Расчетная высота подъема с учетом расположения скипов в копре и нижней части ствола: Нр=Нст+hзагр+hразгр+2&#6 1508;=1000+30+35+20,35=1066 м, (1.1) где Нст -

Выбор подъемных канатов
Выбор подъемных канатов. Линейную массу каната Pк, кг/м, определим по формуле: (1.6) где Qп и Qс - масса полезного за один раз поднимаемого груза и собственная масса скипа, кг; в - врем

Выбор многоканатной подъемной машины
Выбор многоканатной подъемной машины. Наметим к применению многоканатную подъемную машину ЦШ-54 со следующими техническими характеристиками: Диаметром канатоведущего шкива D=5 м; Количе

Условие нескольжения шкива по ведущему валу
Условие нескольжения шкива по ведущему валу. Статический коэффициент безопасности Ксб рассчитываем по формуле : (1.14) 3,3(факт)2(норма), где Fст max=(Qп+Qс+pH+c)g - наибольшее возможно

Кинематика подъемной установки
Кинематика подъемной установки. Основание трапецеидальной диаграммы скорости То, соответствующий путь Но и модуль ускорения ам определим по формулам: То=Тр-t-t1-t&amp ;#

Динамика подъемной установки
Динамика подъемной установки. Масса машины типа ЦШ-54 mм, отклоняющих шкивов mош и двигателя типа П2-800-255-8КУ4 mд, рассчитаем по формулам: m&#

Исходные данные для расчета динамики электропривода
Исходные данные для расчета динамики электропривода. Двигатель Тип П2-800-255-8КУ4 Номинальная мощность Рном=5000кВт Номинальная частота вращения nном=63об/мин Номинальное напряжение Uном=930В Номи

Выбор силового трансформатора
Выбор силового трансформатора. Полную мощность силового трансформатора Sт определим по формуле: (2.7) где км ср вз=0,575 - средневзвешенный коэффициент мощности[2]. Рном - номинальная мощность двиг

Расчет сглаживающего реактора
Расчет сглаживающего реактора. Сглаживающую индуктивность определяем из условия непрерывности выпрямленного тока. При этом принимается, что при угле отпирания тиристоров =80

Расчет автоматического выключателя в якорной цепи
Расчет автоматического выключателя в якорной цепи. Коэффициент пропорциональности между движущим усилием и током якоря двигателя кf определим по формуле: (2.18) где Мном – номинальный момент двигат

Выбор тиристорного возбудителя
Выбор тиристорного возбудителя. Индуктивность обмотки возбуждения двигателя определим по формуле: (2.21) где L - индуктивность, обусловленная полезным потоком, Гн; Lр - индуктивность от полей рассе

Выбор тахогенератора в цепи ОС по скорости
Выбор тахогенератора в цепи ОС по скорости. Применяем тахогенератор типа ПТ-42 с номинальной частотой вращения nтг ном=100 об/мин и номинальным напряжением Uтг ном=230В 2. 2

Расчет системы подчиненного регулирования координат электропривода
Расчет системы подчиненного регулирования координат электропривода. Рассчитаем параметры САУ на основе элементов УБСР-АИ, входящих в состав комплектного электропривода КТЭУ. Система построена по пр

Расчет контура регулирования тока возбуждения
Расчет контура регулирования тока возбуждения. Структурная и функциональная схемы контура регулирования тока возбуждения представлены на рис.3.1. 3.2.l. Постоянная времени фильтра Тфв рассчитываетс

Расчет контура регулирования тока якорной цепи
Расчет контура регулирования тока якорной цепи. Структурная и функциональная схемы контура регулирования тока якорной цепи представлена на рис.3.2. 3.3.1. Постоянную времени фильтра Тфт на входе да

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги