рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Непосредственные умозаключения

Непосредственные умозаключения - раздел Философия, Логика Ю.П. Попов Все Умозаключения Этого Рода Относятся К Разряду Дедуктивных. Часть Из Них Уж...

Все умозаключения этого рода относятся к разряду дедуктивных. Часть из них уже рассматривалась нами, когда речь шла о логическом квадрате; возвращаться к ним нет необходимости. Помимо них есть еще четыре разновидности таких умозаключений - превращение, обращение, противопоставление предикату, противопоставление субъекту.

Превращение - логическая операция, изменяющая качество суждения без изменения его количества.

В художественных и научных текстах иногда прибегают к двойным отрицаниям: "Политика не может не первенствовать", "Ссора возникла не без причины". Подобные выражения встречаются порой в литературе. Чаще всего они представляют собой стилистический прием, подчеркивающий определенные оттенки смысла предложений. Но для логики важно только то, что в результате таких переформулирований меняется качество суждения, значит, меняется логическая форма: утвердительное по смыслу высказывание ("Политика иногда первенствует", "Ссора имеет причину") подается как отрицательное. Может быть и наоборот: отрицательное высказывание удобнее выразить в утвердительной форме (вместо "Линия не прямая" "Линия кривая", вместо "Договор не письменный", "Договор устный", вместо "Преступник не является совершеннолетним" "Преступник несовершеннолетний".

В рассуждениях нельзя путать логическую форму с содержанием, ведь одно может меняться, когда другое остается неизменным. Поэтому логика разрабатывает для преобразования качества суждений специальные правила. Они чрезвычайно просты. При превращении утвердительных суждений частица "не" вносится одновременно в связку и в предикат ("Яблоко зрелое" - "Яблоко не является незрелым"); можно было бы проделать то же самое и в обратном порядке. При превращении отрицательных суждений частица "не" переносится из связки в предикат ("Зима не является снежной" - "Зима бесснежная").

Операция превращения возможна для всех видов суждений - A, E, I, O. Схемы для этой операции и могут быть представлены следующим образом.

Общеутвердительное суждение: S a P => S e -P.

Общеотрицательное суждение: S e P => S a -P.

Частноутвердительное суждение: S i P => S o -P.

Частноотрицательное суждение: S o P => S i -P.

Черта над (перед) символом здесь и далее будет обозначать его отрицание; читается как не-P.

 

Обращение - операция перестановки субъекта суждения и предиката местами без изменения качества суждения.

Обращение, как правило, вызывает изменение количества суждения: частное становится общим, общее делается частным. Но иногда обходится без смены количественных характеристик. Тогда операцию обращения называют чистой или простой. Этот вид умозаключения возможен не для всех, а только для трех видов категорических суждений - A, E, I. Так как процедура обращения зависит от распределенности субъекта и предиката, то из-за этого для каждого вида суждений приходится разрабатывать свои правила.

Общеутвердительное суждение S a P при обращении, как правило, меняет количество, становится частным, поскольку предикат в нем чаще всего не распределен.

S a P => P i S.

Так из суждения "Все инспекторы таможни - государственные служащие" в результате обращения получится: "Некоторые государственные служащие - инспекторы таможни".

Однако у этого правила есть исключение. Оно относится к суждениям с обоими распределенными терминами, что в свою очередь имеет место тогда, когда они равнозначны. В этом случае изменения количества не происходит.

S a P => P a S.

Например, "Эверест - наивысшая точка Земли" ("Наивысшая точка Земли - Эверест"); "Кабинет министров - правительство" ("Правительство - кабинет министров)". Однако правилом надо все-таки считать, что обращение общеутвердительного суждения не является простым, то есть, приводит к суждению частноутвердительному; даже если в каких-то исключительных случаях правильно будет образовывать обращенное общеутвердительное суждение, все равно истинность и частноутвердительного тоже сохранится в силе. Если, следовательно, перед нами общеутвердительное суждение, то мы никогда не сделаем ошибки, если образуем из него обращенное частноутвердительное суждение.

Общеотрицательное суждение S e P. В нем оба термина всегда распределены, поэтому его обращение всегда простое, субъект и предикат всего лишь меняются местами.

S e P => P e S.

"Никакой богослов не материалист" ("Никакой материалист не богослов)"; "Дельфин не рыба" ("Рыба не дельфин").

Частноутвердительное суждение S i P. Его обращение может быть простым, но может сопровождаться и изменением количества. Обращение бывает простым, когда субъект и предикат находятся в отношении пересечения и вследствие этого оба термина не являются распределенными.

S i P => P i S.

"Некоторые романы написаны русскими поэтами" ("Некоторые произведения русских поэтов - романы").

Но когда предикат образует понятие, подчиненное субъекту, то тогда предикат является распределенным термином и, занимая после обращения место субъекта, делает получившееся суждение общеутвердительным.

S i P => P a S.

Например, "Некоторые люди сангвиники" ("Все сангвиники - люди"). "Некоторые правонарушители - преступники" ("Все преступники - правонарушители"). Однако и здесь, как и в случае общеутвердительных суждений, за правило надо признавать только случай, когда предикат не распределен и обращение дает частноутвердительное суждение. Такой итог будет истинным всегда, обращенное же общеутвердительное суждение будет истинным только иногда.

Частноотрицательные суждения не обращаются, потому что им соответствует целых три возможных варианта соотношений по объему между S и P. Причем в случае, когда субъект подчиняет себе предикат, после перестановки их местами истинным суждением было бы общеутвердительное: "Некоторые учебники не задачники" => "Все задачники - учебники". Получается, что не всегда можно соблюсти правило, запрещающее изменять качество в процессе обращения частноотрицательного суж-дения.

Противопоставление предикату есть последовательное применение к суждению операции превраще-ния, а затем к полученному результату - операции обращения.

В языке такая операция проделывается довольно часто, хотя не всегда осознается как специфическая логическая процедура. Допустим, нам сказали: "Корова - парнокопытное животное". Отсюда можно сделать вывод: "Никакое непарнокопытное животное не есть корова". Достаточно немного вдуматься в смысл сказанного и станет понятно, что такой вывод действительно вытекает из первого утвержде-ния. Мы получим его в строгом виде, если сначала превратим исходное суждение, а затем получен-ный результат обратим:

"Корова - парнокопытное животное" => "Корова не есть непарнокопытное животное" => "Никакое непарнокопытное животное не есть корова".

Правда, в большинстве случаев получаются неупотребительные, трудные для понимания языковые конструкции; исключения могут составлять лишь те предложения, в которых фигурируют отрица-тельные понятия "беспристрастный", "непарнокопытный", "несчастье", "невменяемый" и т.п. Тем не менее, в логике разработаны правила преобразования такого рода для всех типов суждений, потому что итог всегда получается правильный. Насколько же это приемлемо для употребления в естествен-ных языках, вопрос для науки второстепенный. Тем более что при использовании символов вместо слов все неудобства пропадают. В символической логике эту операцию называют контрапозицией.

Противопоставление предикату можно проводить с суждениями A, E. O. Частноутвердительные су-ждения не подвергаются этой операции, так как после превращения они делаются частноутверди-тельными и после этого их, согласно правилам обращения, нельзя обращать, Приведем несколько примеров преобразования высказываний по правилам противопоставления предикату. Одно общеот-рицательное суждение:

"заполярные порты не являются южными" - S e P.

"заполярные порты являются неюжными" - S a -P.

"некоторые неюжные порты являются заполярными" -P i S.

И одно частноотрицательное:

"некоторые люди не являются сангвиниками" - S o P.

"некоторые люди являются несангвиниками" - S i -P.

"Все несангвиники - люди" -P a S.

Противопоставление субъекту представляет собой последовательное применение к суждению опера-ции обращения, затем к полученному результату - операции превращения.

В естественном употреблении это преобразование мысли чаще всего встречается в отрицательных суждениях, к тому же использующих отрицательные понятия: "Неделимая частица химического ве-щества не есть молекула" => "Молекула - делимая частица химического вещества"; "Бескорыстие - доброта" => "Доброта не есть корысть".

Мы ограничимся одним подробно расписанным примером проведения такой операции:

"Верующий не является атеистом" S e P.

"Атеист не является верующим" P e S.

"Атеист - неверующий" P a -S.

Эта операция применима к суждениям A, E, I и неприменима к суждениям O, так как частноотрица-тельные суждения не обращаются.

 

– Конец работы –

Эта тема принадлежит разделу:

Логика Ю.П. Попов

ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТИХООКЕАНСКИЙ ИНСТИТУТ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ И ТЕХНОЛОГИЙ ВЛАДИВОСТОК г... Предисловие...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Непосредственные умозаключения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Часть I. Традиционная логика
Наука о законах правильного мышления сложилась в Древней Греции. Ее основателем является ве-ликий Аристотель (384-322 гг. до н.э.), хотя теория понятия начала развиваться уже учителем Ари-стотеля -

Закон тождества
В этом законе непосредственно проявляется природа самых фундаментальных свойств логической мысли - определенности и последовательности. У самого основателя логики он формулируется неоднократно в ег

Закон противоречия
Закон противоречия раскрывает те же самые свойства определенности и последовательности, но только выражает их в отрицательной форме. Если по закону тождества требуется, чтобы мысль о не изменяющихс

Закон исключенного третьего
В логике принято различать два вида противоположности: контрарную (собственно противоположность) и контрадикторную (противоречие). Нам еще придется о них говорить в разделах о понятии и суждении. З

Закон достаточного основания
Четвертый основной закон формальной логики выражает то фундаментальное свойство логической мысли, которое называют обоснованностью или доказанностью. Формулируется он обычно так: всякая мысль истин

Виды понятий
Общие, единичные, пустые понятия. Объемы понятий могут быть разными. Прежде всего, нельзя путать понятия общие и единичные; их различие в логических свойствах не допускает одинакового обращения с н

Типы отношений между понятиями
Логические операции, позволяющие делать определенные выводы и доказывать какие-то утверждения, основываются, как уже отмечалось ранее, на связях и отношениях разных понятий. Такие связи очень много

Определение понятий
В научной литературе определение иногда называют также дефиницией. Определение предназначено для того, чтобы сформулировать в явном виде и зафиксировать содержание понятия, назвать те признаки или

Правила определения понятий
Поскольку понятие - элементарная клетка логической мысли, то его правильное определение представляет собой одно из первых условий безошибочного рассуждения. И всякий разбор высказанных мыслей долже

Суждение и его типы
Если понятие является неким подобием слова естественного языка, то суждение можно сопоставить с предложением в обычной речи. Понятие, как мы помним, является отражением действительности. Но оно, те

Структура суждения
В содержании суждения, прежде всего, имеются два важнейших компонента - субъект и предикат. Субъект - это понятие, отображающее предмет, о котором идет речь. Его можно было бы также назвать логичес

Распределенность терминов в суждении
Свойства суждений определяются еще одним важным показателем - распределенностью их терминов, который играет большую роль в правилах умозаключений. Оно отображает полноту выраженных в суждении знани

Логический квадрат
Благодаря количественным и качественным характеристикам даже суждения с одними и теми же субъектами и предикатами могут различаться между собой. Их называют суждениями с одинаковой материей, потому

Модальные суждения
До сих пор нами рассматривались суждения, в которых отмечается только отношение между предметом и его свойством. Это очень распространенная форма высказывания, поэтому она и является объектом внима

Простой категорический силлогизм
Теория простого категорического силлогизма представляет собой, пожалуй, самую сложную и разви-тую часть традиционной логики. Этот ее раздел был разработан Аристотелем в практически закон-ченном вид

S a P P e MS a MS e P M a PM a SS i P
  (2) M e P S a M S e P P a M S e M S e P M i P M a S S i P P a M M e S S e P (3) M a P

Энтимема
Надо сказать, что сам по себе силлогизм в чистом виде практически не встречается в рассуждениях. Но зато широко распространены его сокращенные формы, так называемые энтимемы. В переводе с греческог

Сложные и сложносокращенные виды силлогизма
Помимо силлогизмов в сокращенном виде встречаются также сложные умозаключения этой разно-видности, в которые входит по два и более силлогизмов. Сюда относятся прогрессивный и регрес-сивный силлогиз

Условные и условно-категорические силлогизмы
И в науке, и в обиходе приходится часто отмечать зависимость тех или иных явлений, событий, про-цессов от всякого рода обстоятельств: факторов, способных изменить течение дел, причинных воз-действи

Индукция и ее виды
Дедуктивное умозаключение переносит общие положения на какие-нибудь частные случаи. Они по-этому предполагают заранее известными те исходные суждения, которые играют роль общих посы-лок. Индукция ж

Научная индукция
Методы научной индукции разрабатываются на основе общего учения об индуктивных умозаключе-ниях. Она может быть полной и неполной во всех разновидностях последней. Но научная индукция направлена на

Аналогия
Аналогия в переводе с греческого означает сходство, подобие. Первоначально древние математики обозначали им пропорцию, однако со временем его смысловое значение расширилось. Помимо из-вестных число

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги