рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Движение тела с переменной массой.

Движение тела с переменной массой. - раздел Науковедение, Моделирование как метод научного познания Стр. 605 Рассмотрим Указанную Задачу В Максимально Упрощенной Постан...

Стр. 605

Рассмотрим указанную задачу в максимально упрощенной постановке. Наши цели:

а) достичь качественного понимания того, как скорость ракеты меняется во время взлета, как влияют на полет разные факторы;

б) оценить оптимальное соотношение параметров, при котором ракета достигнет первой космической скорости и сможет вывести на орбиту полезный груз.

Таким образом, обсуждаемая модель имеет черты как дескриптивной, так и оптимизационной.

Взлет ракеты - сложный процесс, который неизбежно следует огрубить в попытке получения относительно простых и качественно верных результатов. Например, примем, что сила тяги двигателя - величина постоянная на всем этапе разгона. Реально это, скорее всего, не так. но при упрощенном анализе колебаниями силы тяги пренебрежем, равно как и влиянием случайных порывов ветра и множеством других случайных и неслучайных факторов. Но при таком, даже самом упрощенном, анализе нельзя пренебречь наличием сопротивления воздуха, которое при высоких скоростях очень велико. Ни в коем случае нельзя пренебречь и убыванием массы ракеты в процессе взлета - оно огромно и составляет большую часть исходной массы. Так, у одной из крупнейших отечественных ракет «Энергия» стартовая масса составляет 20000 тонн, а к концу взлета всего 200 тонн.

Поиск математического описания проблем не составляет - в его основе все тот же второй закон Ньютона. Поскольку ракета очень быстро набирает столь высокую скорость, что линейной составляющей силы сопротивления заведомо можно пренебречь, то Fconp = k2v2. Примем, что топливо расходуется равномерно вплоть до его полного выгорания, т.е.

где m0 - начальная масса ракеты, ткон - конечная (т.е. масса полезного груза, выводимого на орбиту), α - расход топлива; это допущение согласуется с допущением о постоянной силе тяги. Уравнение движения принимает вид в проекции на вертикальную ось

(7.17)

 

Казалось бы, можно задаться некоторыми значениями величин Fтяги, т0, α, k2 и проводить моделирование, но это была бы чисто формальная деятельность, не учитывающая еще одного важнейшего обстоятельства. Поскольку ракета взлетает на огромную высоту (сотни километров), ясно, что сила сопротивления в менее плотных слоях атмосферы не может быть такой же, как вблизи поверхности Земли (при равных скоростях). Действительно, в коэффициент k2 входит величина r -плотность окружающей среды, которая на «космических» высотах во много раз меньше, чем вблизи поверхности. Заглянем в справочник: на высоте 5,5 км плотность воздуха вдвое меньше, чем у поверхности, на высоте 11км- вчетверо и т.д. Математически зависимость плотности атмосферы от высоты хорошо передается формулой

где b = 1,29∙10-4 (h измеряется в метрах, ρ0 - плотность вблизи поверхности Земли). Поскольку величина h меняется в ходе полета, уравнение для изменения h(t) следует добавить к уравнению (7.17) и записать следующую систему дифференциальных уравнений:

(7.18)

Наша модель становится все более реалистической. Ее совершенствование можно продолжить - например, учесть наличие у ракеты нескольких ступеней, каждая из которых имеет свой запас топлива и тягу двигателя - считая, что после уменьшения массы до некоторого значения сила тяги скачком изменяется; оставим это для самостоятельных размышлений. Перед решением уравнений удобно обезразмерить переменные. Естественной характерной скоростью в данной задаче является первая космическая скорость v* ≈ 7,8 км/с, при которой возможен вывод на орбиту полезного груза; характерное время - момент полной выработки горючего

где mкон - масса груза. Реально t* - две-три минуты. За характерную высоту можно взять, например, h* - ту, на которой плотность атмосферы уменьшается в 10 раз (примерно 17 км). Последняя величина может показаться несколько произвольной (впрочем, она таковой и является), но все равно удобнее измерять расстояния в данной задаче относительно величины, равной нескольким километрам, чем в метрах в системе СИ. Итак, введя безразмерные переменные

после несложных преобразований получим уравнения

 

(7.19)

 

где f(τ) - известная функция:

 

 

а безразмерные параметры a, b, p, e, k выражаются через исходные так:

 

 

То, что f(τ) определяется двумя формулами, связано с наличием двух этапов полета: до и после выработки топлива. Безразмерное время, разделяющее эти этапы - τ = 1; если к этому моменту безразмерная скорость V ≥ 1, то первая космическая скорость достигнута, в противном случае - нет. Параметр а управляет режимом полета; если при достижении величиной V значения, равного единице, топливо еще не все выработано (т.е. τ < 1), можно с этого момента либо положить а = 0 («выключить двигатель»), либо продолжать разгон - в зависимости от постановки задачи. Рис. 7.13 иллюстрирует влияние изменения параметра о на динамику взлета ракеты в рамках принятых выше предположений при фиксированных значениях остальных параметров.

Рис. 7.13. Зависимости V(τ) и H(τ) при а = 0,2, a = 0,3, a = 0,4 и а = 0,5

(кривые на рисунках слева направо)

 


 

– Конец работы –

Эта тема принадлежит разделу:

Моделирование как метод научного познания

Линейное программирование математическая дисциплина посвящ нная теории и методам решения экстремальных задач на множествах мерного векторного... Линейное программирование является частным случаем выпуклого программирования... Многие свойства задач линейного программирования можно интерпретировать также как свойства многогранников и таким...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Движение тела с переменной массой.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Моделирование как метод научного познания
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру,

Физическая модель. Математическая модель, алгоритм, программа.
Стр. 580   Физика - наука, в которой математическое моделирование является чрезвычайно важным методом исследования. Наряду с традиционным делением физики на экспериментальную

Аналогии между лабораторным и вычислительным экспериментами
Лабораторный эксперимент Вычислительный эксперимент Образец Физический прибор Калибровка прибора Измерение . Анализ данных

Имитационное моделирование.
Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для

Численный эксперимент, анализ результатов, верификация эксплуатация модели.
Научное исследование реального процесса можно проводить теоретически или экспери­ментально, которые проводятся независимо друг от друга. Такой путь познания истины носит од­носторонний характер. В

Транспортная модель линейного программирования.
  Транспортная задача. Общая постановка, цели, задачи. Основные типы, виды моделей   Под названием “транспортная задача” объединяется широкий круг задач с едино

Многоотраслевая модель экономики Леонтьева.
Макроэкономика функционирования многоотраслевого хо­зяйства требует баланса между отдельными отраслями. Каж­дая отрасль, с одной стороны, является призводителем, а с другой — потребителем продукции

Балансовые соотношения
Для простоты будем полагать, что производственная сфера хозяйства представляет собой П отраслей, каждая из которых производит свой однородный продукт. Для обеспечения свое­го производства ка

Простые демографические модели.
  Демографические модели предназначены для описания (как правило, с помощью математических методов) состояния населения и его изменений, отдельных элементов воспроизводства населения

Виды демографических моделей
Различают демографические макромодели, описывающие демографические процессы на уровне всего населения или отдельных его частей, и микромодели, отражающие демографические процессы на уровне индивида

Движение небесных тел.
Стр. 607 Как движется Земля и другие планеты в пространстве? Что ждет комету, залетевшую из глубин космоса в Солнечную систему? Многовековая история поиска ответов на эти и другие вопросы

Модель динамики численности биологических популяций.
Стр.639 Попытки математического описания динамики численности отдельных биологических популяций и сообществ имеют солидную историю. Одна из первых моделей динамики роста популяций принадле

Метод Эйлера решения дифференциальных уравнений.
http://rudocs.exdat.com/docs/index-27671.html?page=11 Метод Эйлера — наиболее простой численный метод решения (систем) обыкновенных дифференциальных уравнений. Впервые опи

Движение тела, брошенного под углом к горизонту.
Стр.598   Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается е

Свободное падение тел с учетом сопротивления среды.
Стр. 591 При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой

Результаты вычислений, выполненных в табличном процессоре
    А В С D t v  

Розыгрыш дискретной случайной величины (распределение случайной величины).
http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node24.html          

Модель процесса распространения эпидемий.
Российские ученые создали математическую модель эпидемии в мегаполисе, которая не только описывает распространение заболеваемости в городе, но и подсказывает, какие меры борьбы с ней более эффе

Модель колебательных процессов в физике.
Колебательные и волновые процессы изучают в одном разделе. Этим подчеркивается огромная роль учения о колебаниях в современной науке и технике и то общее, что присуще этим движениям независимо от и

Обезразмеривание системы уравнений.
Значения параметров, получаемые с помощью методов численного решения дифференциальных уравнений, как правило несколько отличаются от их истинных значений из-за наличия ошибки аппроксимации. Поэтому

Движение заряженных частиц в электростатическом поле точечных источников.
На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке

Системный подход в научных исследованиях (системный анализ).
Рассмотрим значения ключевых понятий системного подхода. Как очевидно, основным является определение системы. ^ Определений системы вероятно столько же, сколько и специалистов, которые использую

Солнце и Звезды
В ясную безлунную ночь, когда ничто не мешает наблюдению, человек с острым зрением увидит на небосводе не более двух - трех тысяч мерцающих точечек. В списке, составленном во 2 веке до нашей эры зн

Галактика
С XVII века важнейшей целью астрономов стало изучение Млечного Пути - этого гигантского собрания звезд, которые Галилей увидел в свой телескоп. Усилия многих поколений астрономов - наблюдат

Сферическая составляющая; 2 - диск; 3 - ядро; 4 - слой газопылевых облаков; 5 - корона
Диск и окружающее его гало погружены в корону. Если радиусы диска и гало сравнимы между собой по величине, то радиус короны в пять, а может быть, и в десять раз больше. Почему «может быть»?

Таковы сведения, полученные советским астрономом Я. Эйнасто и его сотрудниками в Тартуской обсерватории.
Конечно, изучать невидимую корону очень трудно. Из-за этого и не слишком точны пока оценки её размеров и массы. Но её главная загадка в другом: мы не знаем, из чего она состоит. Мы не знаем

Звездные миры
К началу нашего века границы разведанной Вселенной раздвинулись настолько, что включили в себя Галактику. Многие, если не все, думали тогда, что эта огромная звёздная система и есть вся Все

Вселенная
Больше всего на свете - сама Вселенная, охватывающая и включающая в себя все планеты, звёзды, галактики, скопления, сверхскопления и ячейки. Дальность действия современных телескопов достиг

Модель поведения динамической системы, описываемой разностным логическим уравнением.
Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, зна

Переход детерминированных систем к хаотическому поведению.
Переход современного естествознания к изучению неравновесных процессов (явлений) обусловил в последние десятилетия особый прикладной интерес к теории нелинейных дифференциальных уравнений. Это связ

Моделирование поведения динамики многочастичных систем.
Моделирование динамических систем по сути является прародителем системно-динамического подхода моделирования. Моделирование с помощью данного подхода используется в мехатронике, электриче

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги