рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Переход детерминированных систем к хаотическому поведению.

Переход детерминированных систем к хаотическому поведению. - раздел Науковедение, Моделирование как метод научного познания Переход Современного Естествознания К Изучению Неравновесных Процессов (Явлен...

Переход современного естествознания к изучению неравновесных процессов (явлений) обусловил в последние десятилетия особый прикладной интерес к теории нелинейных дифференциальных уравнений. Это связано с тем, что математические модели изучаемых реальных процессов представляют собой, как правило, системы уравнений данного типа. Характерной особенностью подобных моделей является то, что набор их возможных решений обладает качественным разнообразием, описывая качественно различающиеся режимы (состояния). Качественные различия могут проявляться прежде всего в периодической или апериодической пространственной структуре решения, циклическом или монотонном поведении во времени, регулярном или нерегулярном (хаотическом) характере изменения решения в пространстве и времени, пространственной мерности и т.п. Обобщая, можно сказать, что эти модели в потенции содержат решения, различающиеся типом пространственно-временной симметрии.

Реализация той или иной определенной структуры решения из числа возможных зависит как от предыстории рассматриваемого процесса (исходного состояния системы), так и от условий, которые, вообще говоря, могут изменяться в пространстве и во времени. В зависимости от текущих значений управляющих параметров, входящих в уравнения, те или иные режимы (состояния системы) оказываются локально устойчивыми или неустойчивыми. Математически неустойчивость означает, что бесконечно малые возмущения данного частного решения быстро усиливаются, и решение “скачкообразно” изменяется (как правило, в отношении топологии). Именно в силу этих характерных особенностей системы нелинейных дифференциальных уравнений позволяют моделировать процессы спонтанного структурообразования, происходящие в реальности [1].

Если решения этих систем уравнений определяются на основе только динамических (без участия статистических) закономерностей, то вполне естественно ожидать, что решения всегда носят не вероятностный, а вполне определенный, полностью предсказуемый, т.е. детерминированный, характер. Это предположение основывается на предпосылке, заключающейся в том, что в любые моменты времени (как в начальный, так и в промежуточные) решение можно в принципе определить абсолютно точно, т.е. оно не будет содержать случайных (неконтролируемых моделью) погрешностей. Данная предпосылка, очевидно, связана с представлениями о континуальности структуры пространства и времени, а также о непрерывности изменения характерных свойств изучаемых систем (объектов) [2].

Итак, если говорить о явлениях, рассматриваемых в рамках классических динамических теорий, то следует признать, что несмотря на возможное качественное разнообразие, сложность и нерегулярность решений, получаемых на основе нелинейных динамических моделей, у нас нет никаких оснований для опровержения знаменитого лапласовского детерминизма в рамках данных теорий. В связи с этим по-прежнему, как и столетия назад, неубедительными и бесперспективными представляются попытки интерпретации некоторых феноменов, относящихся к сфере действия классических динамических теорий, в духе, противоречащем лапласовскому детерминизму.

Один из подобных феноменов – явление так называемого детерминированного хаоса, широко изучаемое в последние десятилетия. В настоящее время достоверно установлено, что решения достаточно простых систем нелинейных дифференциальных уравнений могут носить чрезвычайно сложный, т.е. нерегулярный, хаотический характер [3]. Подобные режимы могут, например, иметь место для определенной области начальных данных при условии, что система обладает решениями, неустойчивыми по некоторым из направлений (в фазовом пространстве) [4]. В этом случае решение остается конечным, “притягиваясь” к устойчивому множеству возможных состояний системы, но в то же время оно не может прийти к стабильному регулярному режиму благодаря “отталкиванию” от неустойчивого множества. Как следствие, близкие по своим исходным состояниям элементы системы могут со временем все больше различаться, а последовательное изменение их состояний может происходить все менее скоррелированно (эффект так называемого разбегания траекторий в фазовом пространстве). Быстрое затухание исходных корреляций – свидетельство высокой степени неупорядоченности движения. Отсутствие корреляции означает, что состояния, являющиеся следствиями близких в начальный момент времени состояний, в ходе этих процессов “забыли” их близкие (почти одинаковые) исходные причины и характеризуются в отношении друг друга как элементы независимых причинно-следственных цепей, т.е. взаимное отношение этих состояний случайно.

Отсюда зачастую делается вывод о том, что изменение состояния системы, управляемое динамическими законами (в отсутствие каких-либо внешних, неконтролируемых, случайных воздействий), может происходить таким образом, что на уровне феноменологии его будет невозможно отличить от “движения под действием случайной вынуждающей силы”.

Отметим прежде всего, что более сильный вывод сделать здесь не представляется возможным. В частности, неправомерно было бы утверждать, что хаотическое поведение динамической системы носит случайный характер. Хаос – вовсе не синоним случайности [5]. Мы говорим о хаотическом поведении на основании ряда важных и специфических черт во внешнем проявлении процесса изменения состояния системы. Но при этом мы вовсе не интересуемся сущностью (механизмом) этого изменения, которое может быть как внутренне определенным и однозначным, т.е. детерминированным и необходимым, так и индетерминированным и случайным. Недаром хаос в динамических системах называют детерминированным. Тем самым осмысленным оказывается и понятие индетерминированного хаоса – хаотического поведения системы под действием причинно не связанных между собой воздействий. Причем это могут быть как внешние по отношению к системе случайные воздействия, так и следствия актов самоактивности элементов системы (флуктуаций), причинная взаимосвязь которых отсутствует или хотя бы просто не рассматривается в рамках данной теории.

Если само хаотическое поведение констатируется на уровне феноменологии, то для классификации хаоса как детерминированного или случайного необходимо анализировать характер самого отношения причинения, лежащего в основе процесса изменения состояния системы. Ясно, что в рамках классических динамических теорий причинно-следственные отношения характеризуются исключительно аспектом необходимости, и, следовательно, совершенно бесперспективны в философско-методологическом смысле попытки интерпретировать соответствующее хаотическое поведение как случайный процесс.

Выше мы приняли в качестве предположения распространенное мнение о том, что “в хаотических динамических системах случайность не привносится извне, а детерминируется областью определения системы” [6]. То есть мы анализировали ситуацию, предполагая, что хаос может иметь место в динамической системе при абсолютном отсутствии каких-либо случайных факторов внешнего или внутреннего происхождения. При этом мы пришли к выводу о том, что такой хаос неправомерно отождествлять со случайностью. Теперь же проанализируем обоснованность предположения о том, что хаотическое поведение решения может иметь место при условии абсолютной абстрагированности математической модели от случайных факторов.

Начнем с неустойчивости, являющейся необходимым условием возникновения хаоса в динамической системе. Как отмечал И. Пригожин, основоположник концепции самоорганизации в неравновесных системах, флуктуации запускают нестабильности. Без возмущений неустойчивость “не сработает”. Это достаточно очевидно и даже имеет экспериментальные подтверждения [7]. Следовательно, любая модель, приводящая к хаосу в динамической системе, помимо динамических законов и точно заданного начального состояния должна учитывать еще и действие флуктуаций. Причем с точки зрения динамики эти флуктуации носят ничем не обусловленный характер, их действия не скоррелированы. Значит, они являются случайным фактором, постоянно воздействующим на состояния элементов системы. Их можно интерпретировать либо как множество независимых случайных внешних воздействий на элементы системы, либо как самоактивность элементов, описание которой принципиально выходит за рамки теории. В любом случае результирующее хаотическое поведение динамической системы – так называемый детерминированный хаос – существенно обязано своим возникновением не только действию динамических (детерминистских) законов, но и наличию статистических (индетерминированных в рамках теоретического описания) факторов. Это представляется совершенно бесспорным, и, следовательно, термин “детерминированный хаос” условен, а понимаемый в буквальном смысле – не вполне адекватен. Важно, чтобы это не приводило к недоразумениям, не создавало впечатления, будто в явлении детерминированного хаоса существенная роль принадлежит исключительно факторам, характеризуемым необходимостью (т.е. динамическим закономерностям), а признаки случайного в поведении системы возникают как следствие этих факторов. На самом деле динамическая система, переходя к хаотическому режиму, конечно, не просто усиливает “слабый шум” благодаря неустойчивости, но важно и то, что без этих слабых случайных возмущений хаос возникнуть не сможет – решение останется нерегулярным в той же мере, что и в начальный момент времени.

В связи с вышесказанным может возникнуть вопрос: каким же образом математические модели явлений учитывают эти случайные флуктуации? Ведь записываются и решаются всегда только динамические уравнения, не содержащие каких-либо стохастических слагаемых? Прежде всего отметим, что получить аналитическое описание хаотического поведения системы практически невозможно. Применение аналитических методов здесь ограничено в основном задачами линейного анализа устойчивости тех или иных частных решений. При решении этих задач возмущения в виде суперпозиции всех возможных гармоник со случайными (неопределенными) значениями амплитуд искусственно привносятся в уравнения, чем и учитывается действие флуктуаций. В целом же решение оказывается неинтегрируемым и для точного описания (задания) требует бесконечной последовательности значений независимых переменных. Естественно, практическое получение подобных решений возможно только расчетным путем. Однако даже современные компьютеры при численном решении разностных или спектральных аппроксимаций дифференциальных уравнений не позволяют избежать неконтролируемых ошибок (как следствий неточности дискретной аппроксимации динамических закономерностей, так и округления результатов вычислений на каждом шаге). Именно этот постоянно действующий случайный “фон” малой амплитуды и моделирует действие природных флуктуаций, позволяя “сработать” нестабильности и возникнуть хаосу. Если бы такие искусственные возмущения не носили случайного характера, то близкие по исходному состоянию элементы системы могли бы сохранять свою близость, т.е. сохранялись бы корреляции, и движение было бы предсказуемым. Понижение амплитуды случайных возмущений может приводить в расчетах к тому, что увеличится временной интервал, на протяжении которого можно достаточно достоверно предсказать (рассчитать) поведение реальной системы. При решении практических задач уровень и спектр задаваемых флуктуаций могут оказывать существенное влияние на соответствие результатов расчетов реальному явлению. Тем самым выбор характеристик флуктуаций представляет собой самостоятельную проблему, решение которой не определяется системой динамических законов. Строго говоря, математическая модель неравновесного процесса с возможным хаотическим характером должна наряду с нелинейными дифференциальными уравнениями, отражающими аспект необходимого в явлении, учитывать в формализованном виде также и эффект флуктуаций, носящий характер случайного.

На основе сказанного можно сделать вывод, что так называемое явление детерминированного хаоса вовсе не доказывает того, что классические нелинейные динамические законы сами по себе способны привести к хаосу, т.е. породить характерные свойства, присущие поведению систем под действием случайных факторов.

– Конец работы –

Эта тема принадлежит разделу:

Моделирование как метод научного познания

Линейное программирование математическая дисциплина посвящ нная теории и методам решения экстремальных задач на множествах мерного векторного... Линейное программирование является частным случаем выпуклого программирования... Многие свойства задач линейного программирования можно интерпретировать также как свойства многогранников и таким...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Переход детерминированных систем к хаотическому поведению.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Моделирование как метод научного познания
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру,

Физическая модель. Математическая модель, алгоритм, программа.
Стр. 580   Физика - наука, в которой математическое моделирование является чрезвычайно важным методом исследования. Наряду с традиционным делением физики на экспериментальную

Аналогии между лабораторным и вычислительным экспериментами
Лабораторный эксперимент Вычислительный эксперимент Образец Физический прибор Калибровка прибора Измерение . Анализ данных

Имитационное моделирование.
Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для

Численный эксперимент, анализ результатов, верификация эксплуатация модели.
Научное исследование реального процесса можно проводить теоретически или экспери­ментально, которые проводятся независимо друг от друга. Такой путь познания истины носит од­носторонний характер. В

Транспортная модель линейного программирования.
  Транспортная задача. Общая постановка, цели, задачи. Основные типы, виды моделей   Под названием “транспортная задача” объединяется широкий круг задач с едино

Многоотраслевая модель экономики Леонтьева.
Макроэкономика функционирования многоотраслевого хо­зяйства требует баланса между отдельными отраслями. Каж­дая отрасль, с одной стороны, является призводителем, а с другой — потребителем продукции

Балансовые соотношения
Для простоты будем полагать, что производственная сфера хозяйства представляет собой П отраслей, каждая из которых производит свой однородный продукт. Для обеспечения свое­го производства ка

Простые демографические модели.
  Демографические модели предназначены для описания (как правило, с помощью математических методов) состояния населения и его изменений, отдельных элементов воспроизводства населения

Виды демографических моделей
Различают демографические макромодели, описывающие демографические процессы на уровне всего населения или отдельных его частей, и микромодели, отражающие демографические процессы на уровне индивида

Движение небесных тел.
Стр. 607 Как движется Земля и другие планеты в пространстве? Что ждет комету, залетевшую из глубин космоса в Солнечную систему? Многовековая история поиска ответов на эти и другие вопросы

Модель динамики численности биологических популяций.
Стр.639 Попытки математического описания динамики численности отдельных биологических популяций и сообществ имеют солидную историю. Одна из первых моделей динамики роста популяций принадле

Метод Эйлера решения дифференциальных уравнений.
http://rudocs.exdat.com/docs/index-27671.html?page=11 Метод Эйлера — наиболее простой численный метод решения (систем) обыкновенных дифференциальных уравнений. Впервые опи

Движение тела, брошенного под углом к горизонту.
Стр.598   Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается е

Свободное падение тел с учетом сопротивления среды.
Стр. 591 При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой

Результаты вычислений, выполненных в табличном процессоре
    А В С D t v  

Движение тела с переменной массой.
Стр. 605 Рассмотрим указанную задачу в максимально упрощенной постановке. Наши цели: а) достичь качественного понимания того, как скорость ракеты меняется во время взлета, как вли

Розыгрыш дискретной случайной величины (распределение случайной величины).
http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node24.html          

Модель процесса распространения эпидемий.
Российские ученые создали математическую модель эпидемии в мегаполисе, которая не только описывает распространение заболеваемости в городе, но и подсказывает, какие меры борьбы с ней более эффе

Модель колебательных процессов в физике.
Колебательные и волновые процессы изучают в одном разделе. Этим подчеркивается огромная роль учения о колебаниях в современной науке и технике и то общее, что присуще этим движениям независимо от и

Обезразмеривание системы уравнений.
Значения параметров, получаемые с помощью методов численного решения дифференциальных уравнений, как правило несколько отличаются от их истинных значений из-за наличия ошибки аппроксимации. Поэтому

Движение заряженных частиц в электростатическом поле точечных источников.
На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке

Системный подход в научных исследованиях (системный анализ).
Рассмотрим значения ключевых понятий системного подхода. Как очевидно, основным является определение системы. ^ Определений системы вероятно столько же, сколько и специалистов, которые использую

Солнце и Звезды
В ясную безлунную ночь, когда ничто не мешает наблюдению, человек с острым зрением увидит на небосводе не более двух - трех тысяч мерцающих точечек. В списке, составленном во 2 веке до нашей эры зн

Галактика
С XVII века важнейшей целью астрономов стало изучение Млечного Пути - этого гигантского собрания звезд, которые Галилей увидел в свой телескоп. Усилия многих поколений астрономов - наблюдат

Сферическая составляющая; 2 - диск; 3 - ядро; 4 - слой газопылевых облаков; 5 - корона
Диск и окружающее его гало погружены в корону. Если радиусы диска и гало сравнимы между собой по величине, то радиус короны в пять, а может быть, и в десять раз больше. Почему «может быть»?

Таковы сведения, полученные советским астрономом Я. Эйнасто и его сотрудниками в Тартуской обсерватории.
Конечно, изучать невидимую корону очень трудно. Из-за этого и не слишком точны пока оценки её размеров и массы. Но её главная загадка в другом: мы не знаем, из чего она состоит. Мы не знаем

Звездные миры
К началу нашего века границы разведанной Вселенной раздвинулись настолько, что включили в себя Галактику. Многие, если не все, думали тогда, что эта огромная звёздная система и есть вся Все

Вселенная
Больше всего на свете - сама Вселенная, охватывающая и включающая в себя все планеты, звёзды, галактики, скопления, сверхскопления и ячейки. Дальность действия современных телескопов достиг

Модель поведения динамической системы, описываемой разностным логическим уравнением.
Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, зна

Моделирование поведения динамики многочастичных систем.
Моделирование динамических систем по сути является прародителем системно-динамического подхода моделирования. Моделирование с помощью данного подхода используется в мехатронике, электриче

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги