рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Поняття про гіроскопічний ефект

Поняття про гіроскопічний ефект - раздел Образование, Кінематика матеріальної точки. нормальне і тангенціальне прискорення   Розглянемо Один З Різновидів Гіроскопів - Гіроскоп На Карданн...

 

Розглянемо один з різновидів гіроскопів - гіроскоп на карданному підвіччі (рис.2). Дисковидне тіло - гіроскоп закріплене на вісі АА, яка може обертатися навколо горизонтальної вісі ВВ, яка в свою чергу, може обертатися навколо вертикальної вісі СС. Всі 3 вісі перетинаються в одній точці Д, що є центром мас гіроскопа і зостаючись нерухомою, вісь гіроскопу може прийняти будь-який напрям в просторі. Силами тертя в підшипниках всіх трьох вісей і моментом руху кілець нехтуємо: тертя в підшипниках мале, то поки гіроскоп нерухомий, його вісі можна надати будь-який напрям. Якщо почати швидко обертати гіроскоп - (наприклад, за допомогою намотаної на вісі мотузочки) і обертати його підставку, то вісь гіроскопа зберігає своє положення в просторі незмінним. Це можна пояснити за допомогою основного закону динаміки обертального руху. Для гіроскопа, що вільно обертається, сила тяжіння не може змінити орієнтацію вісі його обертання. Бо ця сила прикладена до центру мас (центр обертання Д співпадає з центром мас), а момент сили тяжіння відносно закріпленого центра має дорівнювати нулю. Моментом сили тертя ми нехтуємо. Тому, якщо момент зовнішніх сил відносно його закріпленого центра мас дорівнює нулю, то як слідує з рівняння (11).

 

,

 

тобто момент кількості руху гіроскопа зберігає своє значення і напрям в просторі.

Незмінним буде і момент кількості руху гіроскопа відносно вісі обертання, рівний L = Jw і напрямлений вздовж вісі обертання. Отже, при даній умові вісь обертання гіроскопа зберігає своє положення в просторі.

Щоб вісь гіроскопа змінила свій напрям в просторі необхідно, згідно з (11), щоб момент зовнішніх сил, що прикладені до гіроскопа, що обертається відносно його центра мас, відмінний від нуля, то одержуємо явище, що має назву гіроскопічного ефекту. Він полягає в тому, що під дією пара сили F, прикладеної до вісі обертання гіроскопа, вісь гіроскопа (рис.2) обертається навколо прямої , а не навколо прямої , як це вважалося б природним на перший погляд (лежать в площині креслення, а і сили F перпендикулярний до неї).

 

Рис.2 Рис.3

 

Гіроскопічний ефект пояснюється таким чином. Момент М пари сил F напрямлений вздовж прямої . За час момент імпульсу L гіроскопа одержує приріст (напрям співпадає з напрямом ) і стане рівним . Напрям вектора L співпадає з новим напрямом вісі обертання гіроскопа повернуться навколо прямої . Якщо час дії сили малий, то хоч момент сил великий, зміна моменту імпульсу гіроскопа буде теж малим. Тому сила практично не призводить до зміни орієнтації вісі обертання гіроскопа в просторі. Для її зміни потрібно прикладати сили довгий час.

Якщо вісь гіроскопа закріплена підшипниками то в наслідок гіроскопічного ефекту виникають так звані гіроскопічні сили, що діють на опори, в яких обертається вісь гіроскопа. Їхню дію необхідно враховувати при конструюванні пристроїв, що містять в собі масивні складові частини, що швидко обертаються (наприклад, підшипники парових турбін на кораблях).

Гіроскопи застосовуються в різних гіроскопічних навігаційних приладах (гірокомпас, гірогоризонт і т.д.). Інше важливе застосування гіроскопів - підтримання заданого напряму руху транспортних засобів, наприклад судна і літака (автопілот) і ін. При будь-якому відхиленні від курсу внаслідок якихось впливів (хвиль, порив вітру і т.д.) положення вісі гіроскопа в просторі зберігається. Отже, вісь гіроскопа разом з рамами карданового підвісу обертається відносно пристрою, що рухається. Оберт рам карданового підвісу за допомогою певних пристроїв містить рулі керування, які повертають рух до заданого курсу. Подібним же чином гіроскопи можуть застосовуватись для автоматичного керування рухом снарядів, що само рухаються.

Вперше гіроскоп застосований французьким фізиком Фуко (1819 - 1868 рр) для доказу обертання Землі.

 

– Конец работы –

Эта тема принадлежит разделу:

Кінематика матеріальної точки. нормальне і тангенціальне прискорення

Вектор переміщення співпадає з ділянкою траєкторії лише прямолінійному русі... Шлях пройдений тілом являється функцією часу При рівномірному русі швидкість тіла визначається просто як шлях...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Поняття про гіроскопічний ефект

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кінематика матеріальної точки. нормальне і тангенціальне прискорення
  Механіка - це розділ фізики, в якому вивчається найпростіша форма руху матерії - механічний рух, тобто переміщення одних тіл відносно других тіл (або одних частин тіла відносно друг

III. Динаміка матеріальної точки. закони ньютона. інерціальні системи відліку. принцип відносності галілея
  Як уже було сказано, кінематика вивчає рух тіл, не розглядаючи причини, що обумовили цей рух. Динаміка ж розглядає закони руху тіл і ті причини, які його викликають чи змінюють. Дин

Висновки
  У криволінійному русі напрям швидкості завжди змінюється, тому тіло має нормальне прискорення напрямлене перпендикулярно до швидкості в даній точці, тобто вздовж радіуса кривизни тр

Закон збереження імпульсу
  Розглянемо систему взаємодіючих тіл (рис.1).   Рис.1

Робота сили. потужність
  Часто можна спостерігати такі дії сил, при яких тіло переміщується, але кількість руху, його не змінюється. Тому необхідно ввести фізичну величину для характеристики тої дії сил, як

Кінетична енергія. потенціальна енергія, закон збереження механічної енергії
Кінетичною енергією називається енергія механічного руху любого тіла: вимірюється вона тою роботою, яку могло б здійснити тіло при його гальмуванні до повної зупинки, при тій роботі, яку

Елементи кінематики обертового руху
Абсолютно твердим тілом називається таке тіло, віддаль між любими двома точками якого залишається постійна незалежно від наявності або відсутності сил, діючих на тіло. Такі тіла надалі будуть

Висновки
  Для замкнутої системи геометрична сума імпульсів тіл під час будь-яких взаємодій залишається сталою. Робота характеризує дію сили, пов’язану з переміщенням тіла. Я

Момент сили. кінетична енергія обертового тіла
  Нехай тіло обертається під дією сили F. Довжина перпендикуляру, опущеного з вісі обертання на лінію дії сили називається плечем сили. Добуток сили на плече називається моментом с

Момент інерції. рівняння динаміки обертового руху
  При порівнянні законів поступового і обертального руху між ними існує аналогія. Так формули кінетичної енергії мають однаковий вигляд, але при обертанні тіл роль маси відіграє момен

Момент імпульсу. закон збереження моменту імпульсу
  З рівняння (5) маємо:   .   Домноживши обидві ча

Висновки
  Основна задача динаміки обертального руху твердого тіла - визначити кутові координати точок обертового тіла в будь-який момент часу за відомими початковими кутовими координатами, ку

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги