рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Выбор материала для зубчатой передачи редуктора.

Выбор материала для зубчатой передачи редуктора. - раздел Образование, В.М. Герасун, А.А. Карсаков, В.И. Аврамов, В.В. Дяшкин-Титов По Табл. 3 Определяем Марку Стали: Для Шестерни – 40 Х, Твердость &s...

По табл. 3 определяем марку стали: для шестерни – 40 Х,

твердость ³ 45 HRC,

для колеса – 40 Х,

твердость £ 350 НВ.

Разность средних твердостей НВ1 – НВ2 ³ 70.

Сталь – основной материал для изготовления зубчатых колес. Для равномерного изнашивания зубьев и лучшей их прирабатываемости, твердость шестерни НВ1 назначается больше твердости колеса НВ2. В зубчатых передачах марки сталей шестерни и колеса выбираются одинаковыми. При этом для передач, к размерам которых не предъявляются высокие требования применяют дешевые марки сталей типа 40; 40 Х.

По табл. 4 определяем механические характеристики выбранной стали 40 Х: для шестерни твердость 45…50 HRC, термообработка – улучшение и закалка ТВЧ, для колеса твердость 269…302 НВ, термообработка – улучшение.

Определим среднюю твердость зубьев шестерни и колеса:

= 285,5.

По рис.2 , графику соотношения твердостей, выраженных в единицах НВ и HRC, находим НВ1ср=457.

Разность средних твердостей НВ1ср–НВ2ср= 457 – 285,5 = 171,5>70.

2. Определим допускаемые контактные напряжения для зубьев шестерни [s]н1 , и колеса [s]н2:

Рассчитаем коэффициент долговечности Кнд.

, (18)

где Nно – базовое число циклов напряжения, находим по графику рис.3;

Nн - расчетное число циклов напряжений.

Nн = 60 ×с n × t, (19)

где n – частота вращения зубчатого колеса, для которого ведется расчет;

с– число вхождения в зацепления зубьев колеса за один оборот,

в нашем случае с = 1;

t- срок службы, задан по условию задачи.

По условию задачи нагрузка спокойная, тогда имеем:

для колеса – расчетное число циклов напряжений по формуле (19):

=

= 87,9 × 106 циклов

02- базовое число циклов напряжений по графику (рис.3):

02 = 22,5× 106 циклов, тогда коэффициент долговечности для колеса равен по формуле (18):

, т.к. Nн2 > Nн02, Кн2 округляем до 1.

Для шестерни :

- расчетное число циклов напряжения по формуле (19):

=

= 442,8 × 106 циклов

01- базовое число циклов напряжения по графику (рис. 3):

01 = 69,9 106 циклов, тогда коэффициент долговечности для шестерни равен согласно формуле (18): = 1, т.к. Nн1>Nн01 , значение Кнд1 принимаем равным единице.

По табл. 5, определяем допускаемое контактное напряжение [s]н0, соответствующее числу циклов перемены напряжений Nн0 :

для шестерни [s]н01 = 14 HRC41+ 170 = 1447,5 + 170 = 835 МПа

для колеса: [s]н02 = 1,8 ×НВср.2 + 67 = 1,8285,5 + 67 = 580,9 МПа.

Определим допускаемое контактное напряжение:

[s]н = Кнд×[s]н0. (20)

Для шестерни: [s]н1 = Кнд1 × [s]н01 = 1 × 835 Н/мм2 = 835 МПа.

для колеса: [s]н2 = Кнд2 × [s]н02 = 1580,9 Н/мм2 = 580,9 МПа.

Так как НВ1ср – НВ2ср = 457 – 285,5 = 171,5>70 и НВ2ср. =

= 285,5<350 НВ то косозубая передача рассчитывается на прочность по среднему допускаемому контактному напряжению:

[s]н=0,45 ([s]н1+[s]н2). (21)

[s]н=0,45 ([s]н1+[s]н2) = 0,45(835+580,9) = 637,9 Н/мм2 , при этом соблюдается условие :

[s]н = 637,9 Н/мм2 < 1, 23 [s]н2= 1,23 × 580,9 = 714,5 МПа,

После коэффициент 1,23 берется наименьший из напряжений [s]н, или [s]н2 , в нашем случае [s]н2 – наименьшее.

3. Определение допускаемых напряжений изгиба для зубьев шестерни [s]F1 и колеса

Допускаемое напряжение изгиба равно:

[s]F = KFд × [s]F0, (22)

где KFd – коэффициент долговечности;

[s]F0 - допускаемое напряжение изгиба, соответствующее числу циклов

перемены напряжений NF0.

По формуле (22) определим допускаемое напряжение изгиба для шестерни и колеса.

Для шестерни: [s]F1= KFд1 × [s]F01.

Для колеса: [s]F2= КFд2 × [s]F02, где KFд1, на основании расчетов проведенных для KFд1;

KFд2 = 1 при этом NF0 = 4 × 106 для обоих колёс стальных, число циклов напряжений.

Формула для определения коэффициента долговечности, с учетом твердости такова:

, (23)

где NF – расчетное число циклов напряжений, определяется по формуле (19),

аналогично Nн.

По табл. 5 определяем допускаемое напряжение изгиба, соответствующее числу циклов перемены напряжений NF0:

для шестерни [s]F01= 310 Н/мм2, предполагая, что m < 3 мм;

для колеса [s]F02 = 1,03 НВср.2 = 1,03 × 285,5 = 294 МПа.

Подставив известные величины в формулу (22) получаем численное значение допускаемого напряжения изгиба для шестерни и для колеса:

для шестерни: [s]F1= КFд1 × [s]F01 = 1 × 310= 310 МПа,

для колеса [s]F2= КFд2 × [s]F02 = 1 × 294 = 294 МПа.

– Конец работы –

Эта тема принадлежит разделу:

В.М. Герасун, А.А. Карсаков, В.И. Аврамов, В.В. Дяшкин-Титов

Министерство сельского хозяйства Российской Федерации... Департамент научно технологической политики и образования... ФГБОУ ВПО Волгоградская государственная сельскохозяйственная академия...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Выбор материала для зубчатой передачи редуктора.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Исходные данные
  Величина Варианты

Исходные данные
Величина Варианты

Исходные данные
Величина Варианты

Исходные данные
Величина Варианты

Исходные данные
Величина Варианты

Исходные данные
Величина Варианты

При растяжении - сжатии
  Стержень, закрепленный с одной стороны, загружен силами P1

Расчет статически определимой балки на прочность
Для балки, изображённой на рис.1,загруженной сосредоточенными силами Р1=20кН, Р2=40кН, равномерно распределённой нагрузкой q=10кН/м и сосредоточенныммоментомМО=30кН

Построение эпюр поперечной силы Q и изгибающейго момента М
Рис. 3. Схема к построению эпюр Q и M Разбиваем балку на участки, для ч

Второй участок
Рис.5 Рассмотрим часть балки левее сечения II-II (рис. 5) Величина равнодействующей RII

Третий участок
Рассмотрим часть балки левее третьего сечения III-III (рис. 6) Рис. 6.

Четвертый участок
Рассмотрим часть балки правее сечения IV-IV (рис.7).В этом случае правило знаков при составлении уравнений для Q и M меняется на противоположное.

Подбор номера двутавра
По справочной таблице подбираем N0 профиля имеющее близкое значение к 400см3. Соответствует №27(а) у которого Wx=407 cм3. Площадь Ад=

Касательным напряжениям
Проверку проводим балки с двутавровым поперечным сечением (рис. 10). Наибольшее напряжение

Двутавры
  Номер балки   h, мм

Кинематический расчет привода
Спроектировать привод к конвейеру по заданной схеме (рис. 1), открытая быстроходная передача клиноременная, открытая тихоходная – цепкая; редуктор цилиндрический косозубый, срок службы привода t=15

Проектный расчет цилиндрической зубчатой передачи редуктора
4.1. Определим главный параметр – межосевое расстояние , (24) где К

Проверочный расчет зубчатой передачи
5.1. Проверим межосевое расстояние : аw = (d1 + d2) /2 = (41,03 + 198,98) /2 = 120 (мм) 5.2. Проверим контактные напряжения

Силы, действующие в зацеплении
Определим силы, действующие в зацеплении: -окружные Ft1 =- Ft2=2T 2 /d2 (39) где T2 -момент на выходном валу ред

Определение конструктивных размеров зубчатого колеса
Диаметр вала колеса определяется из расчета на кручение по формуле:

Расчет клиноременной передачи
1. По табл. 9 с учетом полученного значения Т1 выбираем тип клинового ремня : Т1 = 0,034 кН × м (см. раздел 1. п.6 «Кинематический расчет привода»). Согласно та

Расчет цепной передачи
1. Определим шаг цепи, р, мм : , (57) где Т1 – вращающий моме

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги