рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гибкость цепи

Гибкость цепи - раздел Образование, ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ   Различают Два Вида Гибкости Цепи: Термодинамическую (Статисти...

 

Различают два вида гибкости цепи: термодинамическую (статистическую) и кинетическую (динамическую). Первая является равновесной, она определяется химическим строением макромолекул и реализуется в результате теплового движения отрезков цепи. Макромолекулы в растворах участвуют в тепловом движении посредством макроброуновского и микроброуновского движения. В первом случае макромолекулы перемещаются как целое, во втором - перемещаются отдельные кинетически независимые отрезки цепи, называемые сегментами. Микроброуновское движение осуществляется за счет столкновений сегментов макромолекул с другими сегментами или молекулами растворителя. В каждый момент времени сегмент претерпевает множество столкновений. Как правило, результирующий момент силы не равен нулю, в результате сегмент движется в направлении результирующего момента, а вместе с ним в эту сторону выгибается макромолекула. Многократные изгибы макромолекулы, являющиеся следствием ее участия в тепловом молекулярно-кинетическом движении, приводят к свертыванию макромолекулы в клубок. Кинетическая гибкость характеризует скорость конформационных переходов, т.е. время, необходимое для смены локальных конформаций. Существует два механизма термодинамической гибкости, один из которых применим для гибкоцепных полимеров, другой - для жесткоцепных.

Поворотно-изомерный механизм гибкости цепи. К гибкоцепным полимерам относятся полиолефины, большинство полимеров виниловых и винил-диеновых мономеров общей формулы -(СН2-СНХ)-, -(CH2-CXY)-, где X, Y -заместители основной цепи. Гибкость таких полимеров обусловлена свободой вращения вокруг простых связей основной цепи, механизм гибкости называется поворотно-изомерным. Рассмотрим детали этого механизма на примере н-бутана, который можно представить как фрагмент цепи полиэтилена (рис. 2.14). При вращении связи C12 или С34 описывается конус с образующей, направленной под углом δ к оси вращения. Угол δ является дополнительным к валентному, т.е. δ = π - 190°. При вращении связи С34 атом С4 описывает окружность, в плоскости которой лежит угол вращения ץ, отсчитываемый относительно транс-положения. Расстояние между конечными атомами C1 и С4 при вращении изменяется и составляет, как показывает расчет, 0,2 нм для цис- и 0,38 для транс-формы. Поскольку радиусы Ван-дер-Ваальса метильной группы примерно равны 0,2 нм, можно ожидать стерического напряжения цис-формы. В этом случае вращение вокруг связи С23 не будет свободным. Вследствие взаимного отталкивания заместителей в i/wc-положении возникают потенциальные барьеры вращения.

 

 

Наличие заторможенного вращения вокруг связей С-С нормальных парафинов впервые было экспериментально обнаружено М.С.Ньюменом. По методу Ньюмена изменение формы молекул в результате вращения связей изображают проекциями связей на плоскость, нормальную к оси вращения (рис. 2.15).

Если смотреть вдоль оси С3-С2, то при вращении связи С3-С4 возможны заслоненные конформации, когда проекции связей на плоскость совпадают (цис- и цис-гош), и заторможенные (скрещенные) конформации (транс- и транс-гош) (на рис. 2.15 заслоненные конформации обозначены скобками). При вращении вокруг связи С23 потенциальная энергия системы периодически изменяется – транс-конформациям отвечают минимумы энергии, цис-конформациям - максимумы (рис. 2.16). Наиболее глубокий минимум отвечает транс-конформации, от которой отсчитывается угол ץ. При вращении по часовой стрелке гош-конформациям приписывается знак «+», при вращении против часовой стрелки - знак «-». Аналогично обозначение конформации, возникающих при вращении вокруг связей С-С основной цепи полимеров виниловых мономеров (см. рис. 2.14, б).

Разница между максимальной энергией, отвечающей заслоненной цис-конформации, и минимальной энергией, отвечающей скрещенной транс-конформации в н-бутане, настолько значительна, что свободного полного вращения вокруг связи С23 не происходит. Молекула находится в одной из

 

 

конформаций с минимальными значениями энергии: транс-, -транс-гош и +транс-гош формах. Энергии этих конформаций отличаются всего на 2,5 кДж/моль (Δε), а потенциальные барьеры (ΔЕ), разделяющие их, равны 14 кДж/моль, т.е. также относительно невелики, поэтому происходит постоянная смена конформаций в результате частичного неполного заторможенного вращения вокруг связи С23. Потенциальные барьеры заторможенного вращения получили название потенциалов торможения. Представления о конформационной изомерии молекул алканов распространены на макромолекулы М.В.Волькенштейном, который впервые предложил поворотно-изомерную модель полимерной цепи. Согласно этой модели, заторможенное вращение

 

 

вокруг связей основной цепи осуществляется дискретно, в результате чего фиксируются конформаций транс-, +транс-гош, -транс-гош. Конформацией с наименьшей энергией является плоский зигзаг основной цепи, отвечающий транс-конформации, и ץ = 0. Вращение вокруг любой из ее σ-связей приводит к излому плоской ленты в том месте, где ץ ≠ 0. Совокупность изломов вызывает свертывание цепи в клубок (рис. 2.17).

В случае макромолекул потенциальные барьеры внутреннего вращения связей становятся зависящими от состояния (углов вращения) соседних связей. Наиболее значимым эффектом является запрет на гош-повороты противоположного знака в соседних связях (так называемый «пентановый эффект»). На рис. 2.18 приведены конформаций, получаемые поворотами вокруг внутренних связей С-С в н-пентане. Из рис. 2.18, б видно, что при g+g- поворотах конечные группы СН3 находятся по одну сторону плоскости, в которой лежат две внутренние С-С-связи, и на достаточно близком расстоянии друг от друга. Пространственные модели показывают, что это расстояние равно 0,25 нм. Выше упоминалось, что радиус Ван-дер-Ваальса метильной группы равен 0,2 нм. Из этого следует, что при сближении метильных групп стерическое отталкивание должно возникать на расстояниях, меньших 0,4 нм, и для g+g- конформации н-пентана оно должно быть весьма значительно.

 

 

 

В случае стереорегулярных изотактических полимеров энергетически наиболее выгодной конформацией является спираль, для которой в наименьшей степени проявляется отталкивание заместителей в изо-триадах звеньев. Так, в макромолекуле изотактического полипропилена каждое звено повернуто относительно другого на 120°, т.е. в триаде последовательно представлены +транс-гош, транс- и -транс-гош конформеры. После упаковки в кристалл спиральные конформации цепей не изменяются, однако, в растворе или расплаве спирали также свертываются в клубки в результате изменения углов вращения вокруг связей основной цепи.

Как термодинамическая, так и кинетическая гибкость зависят от соотношения величин Δε и ΔЕ с тепловой энергией. Если Δε < , то цепь является термодинамически гибкой. В этом случае, как показано выше, в отдельных местах плоского зигзага основной цепи возникают изломы, и в целом она выглядит как рыхлый клубок. При Δε << цепь является предельно гибкой, она сворачивается в более плотные клубки по сравнению с предыдущим случаем. В качестве примера можно указать на полиметилсилоксановый каучук, макромолекулы которого сворачиваются в плотные клубки.

Применительно к изложенному механизму гибкости, «формула квадратного корня» трансформируется в следующие выражения:

 

 

Первое из них относится к цепи со свободным вращением вокруг связей (Δε <<), здесь δ - угол, дополнительный к валентному. Второе относится к цепям с ограниченным вращением вокруг связей - на угол ץ. В обоих выражениях l - длина, n - число звеньев. Существуют зависимости, связывающие углы вращения вокруг связей основной цепи с потенциалами торможения. В некоторых достаточно простых случаях потенциалы торможения удается рассчитать. Тогда выражение (2.28) может быть использовано непосредственно для расчета размера макромолекул. Однако более часто выражения (2.27) и (2.28) используются для оценки гибкости цепи. Отношение

 

 

является мерой гибкости цепи. Величина Rсв может быть легко рассчитана, т. к. величины валентных углов известны. Величина Rтр определяется экспериментально. В последнем случае необходимо использовать идеальный, так называемый θ-растворитель, который не оказывает возмущающего влияния на размеры клубков. С учетом этого

 

 

где σ - стерический фактор или фактор гибкости.

Термодинамический сегмент Куна. Модель идеальной свободно сочлененной цепи в определенных условиях может быть применена к реальным макромолекулам. Хотя в последних полная свобода вращения вокруг одной связи в большинстве случаев отсутствует, последовательность нескольких связей обеспечивает полную свободу ориентации, т.е. кинетическую независимость связываемых ими отрезков цепи. В качестве примера можно указать на цепь из канцелярских скрепок. Две скрепки можно повернуть относительно одна другой на угол, примерно равный 180°, однако последовательность нескольких скрепок обеспечивает полную свободу вращения и независимость ориентации связываемых ими отрезков цепи. Из сказанного следует, что любую реальную цепь гибкоцепного полимера условно можно представить в виде последовательности кинетически независимых отрезков цепи -сегментов. Очевидно, что, чем гибче цепь, тем меньше длина сегмента и наоборот. Следовательно, длина сегмента характеризует термодинамическую гибкость цепи. Поэтому он называется термодинамическим или сегментом Куна - по имени ученого, впервые предложившего изложенный подход.

Длина термодинамического сегмента Куна l* или связанная с ней величина числа звеньев в сегменте n* определяется, исходя из двух простых соотношений:

 

 

где L - контурная длина; - расстояние между концами; n - число звеньев в макромолекуле. Величина , как уже говорилось, определяется методами вискозиметрии, седиментации и светорассеяния. Контурная длина цепи для полимеров виниловых мономеров определяется, исходя из простого соотношения:

 

 

где δ - угол, дополнительный к валентному; d - длина связи С-С; n - число мономерных звеньев в цепи. Смысл формулы становится понятным из рассмотрения рис. 2.19.

Персистентная гибкость. Другой механизм реализуется в случае цепей равномерной гибкости жесткоцепных полимеров. К ним относятся макромолекулы двухтяжевых полимеров, в частности, двойная спираль ДНК. Общей причиной равномерной гибкости является незначительная, в пределах нескольких градусов, деформация валентных углов, а также малые (до 3 %) колебания длин связей. Эта гибкость невелика, тем не менее, благодаря ей достаточно удаленные отрезки цепи могут ориентироваться независимо. В качестве примера рассмотрим стальную проволоку. Короткий отрезок проволоки не только не имеет изломов, но и его кривизна незначительна, практически не заметна на глаз. Тем не менее длинный отрезок проволоки самопроизвольно принимает форму неупорядоченной спирали. Изложенный механизм гибкости называется персистентным. Количественной характеристикой персистентной гибкости является так называемая персистентная длина , определяемая соотношением (2.34), которое, в свою очередь, иллюстрируется рис. 2.20. Здесь S - контурная длина отрезка цепи постоянной гибкости, θ - угол между касательными, проведенными к концам отрезка, характеризующий его изгибание, cosθ - средний косинус угла изгибания (закручивания в случае цепи):

 

 

Анализ формулы (2.34) приводит к следующим выводам. При >> S cosθ → 1, это означает, что данный отрезок близок к форме стержня. При << S cosθ → 0 , что соответствует неупорядоченному искривлению S и потере корреляции между концами. В данном случае cosθ может принимать

 

 

 

любые значения - положительные и отрицательные. Поскольку ни одна из конформаций не имеет преимуществ, то среднее значение cosθ равно нулю. Строго доказано, что длина термодинамического сегмента Куна связана с персистентной длиной соотношением:

 

 

В табл. 2.2 приведены значения стерического фактора и длины сегмента Куна, характеризующие термодинамическую гибкость цепи для некоторых классов полимеров и отдельных представителей. Напомним, что увеличение значений обоих параметров свидетельствует об ухудшении гибкости цепи. Из табл. 2.2 следует, что наибольшей гибкостью обладают гетероцепи, содержащие атомы серы и кислорода. Ясно, что причина аномально большой гибкости таких цепей связана со свободой вращения вокруг связей атомов, не имеющих заместителей. Причина достаточно большой гибкости цепей полимеров диенов связана с большей, по сравнению с полимерами виниловых мономеров, свободой вращения вокруг связей, примыкающих к двойным.

К снижению гибкости цепи приводит наличие в ней циклов и сопряжение атомов, входящих в состав основной цепи. Первое можно видеть на примере целлюлозы и ее производных, а также поли-n-бензамидов. Значения параметров гибкости обоих классов намного превышают те, что характерны для

 

полимеров виниловых мономеров. Однако само по себе наличие циклов в цепи не всегда приводит к существенному ужесточению цепи. Этому может помешать наличие гибких мостиков между циклами или отсутствие сопряжения между ними. Так, из табл. 2.2 видно, что поли-n-фенилентерефталамид имеет существенно более жесткую цепь по сравнению с соответствующим мета-полимером. Это объясняется большей энергией сопряжения в цепи в первом случае, из-за чего вращение вокруг связей цепи, нарушающее это сопряжение, является энергетически невыгодным. Еще более ярко эффекты сопряжения проявляются в поли-алкил(арил)-изоцианатах. Это обусловлено затрудненностью вращения вокруг связи C-N в амидной группе, что хорошо видно из мезомерной структуры, указывающей на увеличение двоесвязанности этой связи в результате p-π-сопряжения (напомним, что вращение вокруг кратных связей невозможно):

 

 

Поли-н-бутилизоцианат имеет одну из наиболее жестких цепей, поскольку последняя образована амидными связями, сопряженными между собой. В случае р-π-сопряжения этот эффект наиболее наглядно может быть выражен мезомерными, т.е. резонансными структурами:

 

 

где R - н4Н9. Наличие сопряжения и двоесвязанности между атомами цепи препятствует вращению вокруг любой ее связи.

Иная ситуация характерна для поли-м-толилизоцианата:

 

 

Сопряжение в основной цепи этого полимера отсутствует, поскольку энергетически более выгодным оказывается р-π-сопряжение неподеленной пары азота с ароматическим заместителем. Поэтому вращение вокруг связей основной цепи достаточно свободно, так как оно не изменяет столь существенно внутренней энергии системы, как в предыдущем случае, и цепь является существенно менее жесткой.

Заместители оказывают меньшее влияние на гибкость основной цепи по сравнению с ее строением и химическим составом. Из рис. 2.21 видно, что увеличение молярного объема заместителя приводит к закономерному возрастанию жесткости цепи в ряду полиметакрилатов. При переходе от полиметил- (I) к полицетил- (II) и полиоктил- (III) акрилатам длина сегмента Куна возрастает от 2 до 5-6 нм, при этом объем заместителя возрастает на порядок.

 

 

При сравнении полимеров разнотипных мономеров значение этого фактора проявляется менее определенно, но все же упомянутая выше тенденция прослеживается (табл. 2.3). Более существенно на гибкость цепи влияет полярность заместителя, о чем можно судить, сравнив параметры гибкости

 

 

полипропилена и полиакрилонитрила. Оба полимера имеют близкие объемы заместителя, но полярность заместителя выше у полиакрилонитрила. Группа -C≡N является одной из наиболее полярных, ее дипольный момент близок к 4 D.

Гибкость цепи оказывает влияние на многие свойства полимера, в частности, на температуру стеклования (см. разд. 4.2.2).

Кинетическая гибкость цепи. Кинетическая гибкость цепи определяется, в первую очередь, величиной потенциальных барьеров вращения, а также внутри- и межмолекулярным взаимодействием. Последнее особенно существенно для конденсированного состояния полимеров. Потенциальные барьеры вращения простых молекул определяются спектральными методами по температурной зависимости интенсивности поглощения.

 

 

В табл. 2.4 приведены потенциальные барьеры вращения для некоторых соединений. В случае n-бутана приведенное значение относится ко второму, меньшему максимуму (см. рис. 2.16). Из таблицы следует, что наиболее низки потенциальные барьеры вращения вокруг связей С-О, C-S, C-Si, C-C=C. Известно, что еще более низкими являются потенциальные барьеры вращения вокруг связей Si-O, P-O, P-N. Полимеры, содержащие в основной цепи упомянутые связи, имеют большую кинетическую гибкость. Для реализации кинетической гибкости необходимо, чтобы величина потенциального барьера вращения была соизмерима с кинетической энергией теплового движения сегментов. Кинетическая или динамическая гибкость цепи зависит от высоты потенциального барьера ΔE, разделяющего транс- и транс-гош состояния.

 

– Конец работы –

Эта тема принадлежит разделу:

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ

Ю Д СЕМЧИКОВ... ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гибкость цепи

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОТ АВТОРА
  Данный учебник предназначен для обучения студентов химических факультетов университетов по специальности 011000 «Химия» в рамках преобладающей в стране многоуровневой системы образо

Полимеры и наука о полимерах
  В зависимости от величины относительной молекулярной массы, далее называемой просто молекулярной массой, химические соединения подразделяют на три группы: низкомолекулярные соединен

Различия в свойствах высоко- и низкомолекулярных соединений
  Макромолекулы полимеров, в отличие от молекул низкомолекулярных веществ, являются нелетучими, для них характерны меньшие скорости диффузии, а для растворов полимеров характерны мень

Образование, получение и распространение полимеров
  В соответствии с распространенностью в окружающем нас мире полимеры располагаются в ряд: природные неорганические полимеры >> природные органические полимеры > синтетически

Тривиальная, рациональная и систематическая номенклатура полимеров
  Номенклатура, т.е. принципы и правила образования названий полимеров и сами названия, должна выполнять две основные задачи: позволять воспроизвести химическое строение полимера, исх

Распределение макромолекул по молекулярным массам
  Согласно ИЮПАК рекомендуется применять два основных термина (Manual of Symbols and Terminology for Physicochemical Quantities and Units // Pure Appl. Chem., 51, 1 (1979).): молярная

Моменты распределения и средние молекулярные массы
  Определение понятия средней ММ полимера при непрерывном распределении базируется на теории случайных величин, каковыми и являются значения ММ макромолекул для большинства полимериза

Параметр полидисперсности
Важной характеристикой полидисперсного полимера является ширина ММР. Известно, что мерой отклонения значений случайных величин от среднего является дисперсия или средневзвешенная сумма квадратичных

Химическая изомерия звеньев
  Этот вид изомерии может быть обусловлен изомеризацией мономерных звеньев в процессе полимеризации, что особенно характерно для олефинов, а также связан с различной ориентацией моном

Стереоизомерия
  Рассмотрим возможное пространственное положение звеньев в полимерах, полученных из монозамещенных этиленов, т.е. в полимерах виниловых мономеров. Каждый из третичных атомов углерода

Идеальный клубок
  Многие свойства цепных макромолекул и полимеров в целом, а также форма и размер первых могут быть предсказаны теоретически на основе анализа модели идеальной цепи. Физической модель

Реальные цепи. Эффект исключенного объема
  Реальные цепи отличаются от идеальных взаимодействием звеньев между собой и с молекулами растворителя. Эти взаимодействия могут быть как физическими, так и химическими, простейшими

Природа упругости полимеров
  Свойство, проявляющееся в обратимости деформации, называется упругостью. Для кристаллических тел обратимые деформации не превышают 1 %. Для полимеров, находящихся в высокоэластическ

Термодинамические составляющие упругой силы
  Природа упругой силы, вызывающей обратимость деформаций, может быть выявлена при анализе термодинамики обратимого растяжения упругого тела. В этом случае при условии V = const работ

Упругость идеального газа
  Рассмотрим один моль идеального газа, находящегося в цилиндре с поршнем (рис. 2.22), при двух состояниях: р1, V1 и р2, V2, причем р1

Упругость идеального клубка
  Первая теория эластичности каучука, так называемая кинетическая теория, была предложена в 1932 г. швейцарским ученым Мейером, далее она получила развитие и подтверждение в работах М

Упругость полимерной сетки
  Чрезвычайно важное в практическом отношении свойство эластичности материально реализуется в резинах, т. е. сшитых каучуках, которые мы далее будем называть полимерными сетками. При

Модель Максвелла. Релаксация напряжения
  Идеально упругое тело. Поведение идеально упругого тела описывается законом Гука (2.39), а универсальной характеристикой упругости является модуль Юнга Е - коэффици

Теория рептаций
  Из уравнения (2.63) следует, что свойства упруговязкой жидкости определяются временем релаксации

Модель Кельвина. Ползучесть
  В модели Кельвина упругий и вязкий элементы соединены параллельно (см. рис. 2.28, б). Сила, прилагаемая к модели, эквивалентна напряжениям, развивающимся в вязкоупругом теле, а смещ

Динамическая вязкоупругость
  При постоянной нагрузке или определенной деформации моделей или материалов вязкоупругость называется статической, при переменных нагрузках и деформациях - динамической. Переменные н

Релаксационные свойства полимеров. Принцип суперпозиции
  В общем случае под релаксационными явлениями в полимерах понимают изменение их свойств во времени, обусловленное достижением равновесного состояния. В принципе релаксационные явлени

Используемые термодинамические понятия и величины
При изложении термодинамики растворов часто используют парциальные величины, которые характеризуют изменение экстенсивных свойств системы при добавлении бесконечно малого количества одного из компо

Принципы расчета энтальпии и энтропии смешения
  Принципы расчета энтальпии и энтропии смешения были развиты в работах Гильдебранда, Ван-Лаара, Лоренца и др. в 20-30 гг. XX в. применительно к растворам низкомолекулярных соединений

Теория Флори-Хаггинса
  Первая термодинамическая теория растворов полимеров была разработана независимо Флори и Хаггинсом в 40-50 гг. XX в. Эта теория сыграла большую роль в понимании физической природы ра

Коллигативные свойства растворов полимеров. Осмотическое давление
  К коллигативным свойствам относятся: снижение давления пара растворителя в растворе по сравнению с чистым растворителем; понижение температуры замерзания раствора

Уравнение состояния. Термодинамическая характеристика раствора
В том случае, когда нужно охарактеризовать осмотическое давление раствора полимера в достаточно широком диапазоне концентраций, раствор нельзя рассматривать как идеальный с невзаимодействующими мол

Исключенный объем и термодинамические свойства раствора
  Вернемся вновь к проблеме исключенного объема (2.1.2) с тем, чтобы выявить влияние на него параметров, характеризующих термодинамическое качество растворителя. Исключенный

Ограниченная растворимость. Фракционирование
  Для растворов высокомолекулярных соединений, как и для смесей низкомолекулярных веществ, характерно явление ограниченной растворимости. При достижении предельной растворимости полим

Набухание. Гели
  Как уже отмечалось, растворению полимера предшествует его набухание, т.е. увеличение объема и массы высокомолекулярного соединения, находящегося в контакте с растворителем или его п

Вязкость разбавленных растворов полимеров
  Существуют две модели движения макромолекулярного клубка в жидкости. Согласно модели Рауза, звенья (сегменты) цепи испытывают при движении трение, но не увлекают за собой жидкость.

Концентрированные растворы полимеров
В общем случае свойства растворов полимеров зависят от концентрации, молекулярной массы полимера и природы растворителя. Два последних фактора в определенной степени учитываются величиной характери

Влияние зарядов на конформации макромолекул
  Полиэлектролитами называют высокомолекулярные соединения, макромолекулы которых содержат ионогенные группы, способные к диссоциации на ионы. В зависимости от природы и степени диссо

Взаимодействие заряженных цепей с противоионами. Коллапс сеток
  Из теории двойного электрического слоя известно, что часть ионов адсорбируется на границе раздела, образуя так называемый слой Гельмгольца. В случае полиэлектролитов часть противоио

Свойства растворов полиэлектролитов
  Наиболее ярко влияние зарядов проявляется при изучении вязкостных свойств полиэлектролитов. Рассмотрим зависимость вязкости раствора желатины (белка) от pH среды (рис. 3.12). Минима

Природа жидкокристаллического состояния вещества
  Структура веществ в жидкокристаллическом состоянии является промежуточной между структурой жидкости и кристалла. Это промежуточное состояние называется мезомерным, от «мезос» - пром

Влияние температуры и полей на жидкокристаллические системы
  Шаг холестерической спирали l имеет порядок длины волны видимого света и зависит от температуры. Кроме того, соответствующие мезофазы способны селективно отражать свет с длин

Вязкость растворов жидкокристаллических полимеров
  Жидкокристаллическое упорядочение в растворах приводит к появлению максимума на зависимости вязкости от концентрации. На рис. 3.19 приведена подобная зависимость для растворов поли-

Высокопрочные и высокомодульные волокна из жидкокристаллических полимеров
  Впервые высокопрочные и высокомодульные волокна из растворов жидкокристаллических полимеров поли-n-бензамида и поли-n-фенилентерефталата были получены в 1960-х гг. Синтез этих полим

Условия кристаллизации. Строение полимерного кристалла
  Все полимеры делятся на аморфные и кристаллические. Необходимым условием кристаллизации полимеров является наличие дальнего порядка в расположении звеньев цепи, что наблюдается у ст

Кинетика кристаллизации
  Кристаллизация полимера из расплава возможна в достаточно широком температурном интервале между температурами плавления и стеклования. Из-за малой подвижности макромолекул процесс к

Термомеханическая кривая
  Для аморфных полимеров в зависимости от температуры характерны три различных состояния - стеклообразное, высокоэластическоеи вязкотекучее.Первые дв

Стеклообразное и высокоэластическое состояния полимеров
  Стеклообразное состояние - это одна из форм твердого состояния аморфных полимеров, для которой характерны небольшие упругие деформации с высокими значениями модуля упругости E≈

Вязкотекучее состояние полимеров
  Это состояние полимеров относится к их расплавам, для него характерны преимущественно необратимые деформации, т.е. течение. Перемещение, т.е. рептация макромолекул при течении, осущ

Пластификация полимеров
  Под пластификацией понимается один из способов модификации полимеров, связанный с введением в них низкомолекулярных веществ, в результате чего снижаются температуры стеклования и те

Деформационные свойства полимеров. Ориентация
  При изучении механических свойств полимеров последние подвергаются различного вида деформациям, аналогичным тем, что имеют место при эксплуатации полимерных материалов. К ним относя

Теоретические и реальные прочность и упругость кристаллических и аморфных полимеров
  При растяжении кристаллических полимеров оси макромолекул ориентируются, т.е. располагаются в направлении действия растягивающей силы. В результате действия внешней силы вдоль оси м

Механика и механизм разрушения полимеров
  На вопрос, как и почему разрушаются твердые тела, впервые ответил Гриффит еще в конце XIX в. Его теория, которую можно отнести к механике разрушения, по праву считается классической

Ударная прочность полимеров
  Разнообразные способы механического воздействия, приводящие к разрушению полимерного материала, можно отнести к трем типичным случаям: ударные воздействия, длитель

Долговечность. Усталостная прочность полимеров
  Представим, что некий груз поднят тросом из полимерного материала. Означает ли это, что груз может висеть в подвешенном состоянии к тросу сколь угодно долгое время? Нет, не означает

Электрические свойства полимеров
4.4.1. Полимерные диэлектрики   По величи

Релаксационные переходы
  Если напряжение, приложенное к полимеру, изменяется по гармоническому закону, то по такому же закону, но со сдвигом фаз, меняется дипольная поляризация. В этом случае частотные зави

Синтетические металлы
  Полимеры с сопряженными связями (ПСС) в определенных условиях обладают проводимостью, равной или близкой проводимости металлов, поэтому данный класс полимеров часто образно называют

Радикальная полимеризация
  При цепной полимеризации макромолекулы полимера образуются в результате раскрытия кратных связей или циклов мономеров при действии на них активных центров, находящихся на концах рас

Инициирование радикальной полимеризации
  Первичные радикалы, необходимые для инициирования радикальной полимеризации, могут быть получены в результате химических реакций и при физическом воздействии на мономер.

Окончание таблицы 5.1
   

Элементарные реакции и кинетика полимеризации
  Неразветвленная цепная химическая реакция включает три последовательные стадии - инициирование, рост и обрыв кинетической цепи. Под последней понимается последовательность химически

Инициирование.
Реакция инициирования включает два последовательных акта: образование первичных свободных радикалов в результате распада инициатора или облучения мономера и присоединение радикалов к мономерам:

Обрыв цепи.
Обрыв цепи осуществляется посредством одного из двух возможных механизмов: а) соединения (рекомбинации) радикалов  

Молекулярно-массовое распределение при радикальной полимеризации
  Нахождение дифференциальной функции числового распределения при радикальной полимеризации сводится к нахождению вероятности образования макромолекул с заданной степенью полимеризаци

Влияние температуры и давления на радикальную полимеризацию
  Влияние температуры на скорость химической реакции выражается уравнением Аррениуса:  

Диффузионная модель обрыва цепи. Гель-эффект
  Реакция обрыва является единственной элементарной реакцией, которая контролируется диффузией на всех стадиях процесса. Определяющее влияние диффузии на скорость бимолекулярного обры

Каталитическая передача цепи
  В 1980 г. было обнаружено, что кобальт порфирин (СоП), т.е. тетрапиррольный комплекс Со (II) катализирует реакцию передачи цепи на мономер при полимеризации метилметакрилата. Конста

Псевдоживая радикальная полимеризация
  При псевдоживой радикальной полимеризации растущие цепи часть времени (большую) являются неактивными, другую часть времени (значительно меньшую) - активными, т.е. участвуют в реакци

Эмульсионная полимеризация
  В соответствии со способом проведения радикальная полимеризация подразделяется на полимеризацию в массе, растворе, суспензионную и эмульсионную. Лишь последняя выделяется ярко выраж

Элементарные реакции. Кинетика
  Катионная полимеризация является цепной полимеризацией, при которой активным центром на конце растущей цепи является катион. К мономерам катионной полимеризации относятся соединения

Псевдокатионная и псевдоживая катионная полимеризации
  В некоторых случаях рост цепи при катионной полимеризации происходит путем присоединения мономера к «скрытой» ионной паре, компоненты которой связаны ковалентной связью. Такая полим

Влияние растворителя и температуры
  Роль растворителя в катионной полимеризации заключается, прежде всего, в его влиянии на степень разделенности ионных пар на концах растущих цепей. Существует четыре типа активных це

Основные реакции инициирования
  Анионная полимеризация инициируется металлами I и II групп, их алкилами, арилами, амидами, алкоксидами, слабыми основаниями - гидроксидами, аминами и фосфинами, а также ионизирующим

Кинетика анионной полимеризации с обрывом цепи
  Классическим примером анионной полимеризации с ярко выраженными реакциями передачи и обрыва цепи является полимеризация стирола в жидком аммиаке, инициируемая амидом щелочного метал

Живая полимеризация. Блок-сополимеры
  Впервые живую анионную полимеризацию наблюдали Абкин и Медведев в 1930-х гг., однако систематически исследовал этот процесс Шварц в 50-х гг. XX в., и к настоящему времени анионная п

Полимеризация с переносом группы
  Живая полимеризация таких полярных мономеров, как акриловые и метакриловые эфиры, может быть проведена при существенно более высокой температуре по сравнению с традиционным методом

Влияние температуры, растворителя и противоиона
В анионной полимеризации, так же как и в катионной, активные центры на концах растущих цепей могут находиться в виде ионных пар с различной степенью разделенности зарядов и свободных ионов. Влияние

Ионно-координационная полимеризация
  Среди разных видов цепной полимеризации ионно-координационная имеет особое значение, поскольку она позволяет получать стереорегулярные полимеры, способные к кристаллизации. При «сво

Катализаторы Циглера-Натта. Исторический аспект
  В 1932 г. Штаудингер впервые указал на то, что полимеры виниловых мономеров, подобные полистиролу, содержат в основной цепи макромолекул асимметричные атомы углерода. Позднее Бун пр

Полимеризация на гетерогенных катализаторах Циглера-Натта
  Формально в большинстве случаев полимеризация на катализаторах Циглера-Натта может быть отнесена к анионно-координационной. Это относится, прежде всего, к полимеризации неполярных м

Анионно-координационная полимеризация диенов
  Механизм полимеризации диенов-1,3, инициируемой литийорганическими соединениями, определяется природой растворителя. В зависимости от условий полимеризации в полимерной цепи изопрен

Синтез гетероцепных полимеров ионной полимеризацией
  В отличие от карбоцепных полимеров, которые могут быть получены как радикальной, так и ионной полимеризацией, гетероцепные полимеры получаются лишь ионной полимеризацией. Наиболее и

Карбонилсодержащие соединения
  В результате полимеризации карбонилсодержащих соединений образуются полиацетали:

Полимеризация эфиров и эпоксидов с раскрытием цикла
  Реакция роста при катионной полимеризации циклических эфиров, например тетрагидрофурана, протекает через оксониевые активные центры:  

Полимеризация лактамов и лактонов
  Катионная полимеризация циклических амидов инициируется широким кругом протонных и апротонных кислот. Первые протонируют мономер, который затем взаимодействует с другой молекулой мо

Другие гетероциклы
  Очень важной с практической точки зрения является ионная полимеризация циклосилоксанов, осуществляемая в широких масштабах в промышленности. Наиболее часто линейный полидиметилсилок

Ступенчатая полимеризация
  Как уже упоминалось в главе 1, при ступенчатой полимеризации, называемой также поликонденсацией, макромолекулы образуются в результате молекулярных реакций функцион

Равновесная и неравновесная поликонденсация
  Все реакции поликонденсации обратимы, однако, константа равновесия этой реакции может изменяться в широких пределах. Например, из наиболее практически важных реакций переэтерификаци

Кинетика поликонденсации
Рассмотрим основные кинетические закономерности поликонденсации на примере полиэтерификации. Катализаторами реакции этерификации являются кислоты и щелочи. Механизм кислотного катализа к настоящему

Молекулярно-массовое распределение полимера при поликонденсации
  Рассмотрим молекулярно-массовое распределение полимера, полученного поликонденсацией мономера ARB или эквимолярной смеси ARA и BR1B. Используем статистический метод, кото

Разветвленные и сшитые полимеры
  Рассмотренные выше линейные полимеры получаются в результате конденсации мономеров с функциональностью ƒ = 2. Под последней понимается число функциональных реакционнос

Фенопласты, аминопласты
  Фенолформальдегидные смолы. Фенопласты. Фенолформальдегидная смола была первым полимером, освоенным промышленным производством еще в 1909 г. Патент на ее производст

Полиуретаны. Полисилоксаны
  Полиуретаны. Полиуретаны образуются в результате конденсации изоцианатных -N=C=O и гидроксильных групп. Линейные полиуретаны образуются при поликонденсации диизоциа

Жесткоцепные ароматические полимеры
  Полимеры с существенно большей температурой эксплуатации и прочностью, содержащие, как правило, в цепи ароматические структуры и поэтому являющиеся жесткоцепными, появились позже ра

Сверхразветвленные полимеры
  Возможность образования сверхразветвленных полимеров из полифункциональных мономеров типа ARB2, где А и В реагируют лишь друг с другом, но не с подобными себе, была показ

Термодинамика синтеза
  Полимеризация мономера возможна при условии:  

Сопоставление ионной и радикальной полимеризации
  В целом радикальная полимеризация изучена более полно и глубоко по сравнению с ионной из-за значительных трудностей, встречающихся при экспериментальном исследовании последней вслед

Об общности процессов псевдоживой полимеризации
  Почти полвека известна идеальная живая анионная полимеризация, включающая две элементарные реакции - инициирования и роста цепи. Радикальная псевдоживая полимеризация была открыта л

Кривые состава сополимера и относительные активности мономеров
  Около 90 % сополимеров, получаемых в промышленности, являются двухкомпонентными. Соответствующая сополимеризация называется двухкомпонентной или бинарной

Состав и микроструктура сополимера. Статистический подход
  Уравнения состава сополимера могут быть получены более строгим -статистическим методом без каких-либо исходных допущений, как это было сделано выше, которые предполагают равенство с

Многокомпонентная сополимеризация
  Как уже упоминалось, в практическом отношении весьма важна терполимеризация, которая используется для придания сополимеру специфических свойств - сшиваемость, окрашиваемость, удароп

Сополимеризация до глубоких конверсии
  В результате разной активности мономеров при сополимеризации текущий состав мономерной смеси и, следовательно, текущий состав сополимера постоянно изменяются с увеличением степени и

Скорость сополимеризации
  Изменение состава мономерной смеси, как правило, приводит к заметному, а иногда к драматическому изменению скорости и степени полимеризации. Это связано с изменением эффективных зна

Природа эффекта предконцевого звена
  Модель предконцевого звена была предложена Мерцем, Алфреем и Голдфингером в 1946 г., ими же впервые было получено уравнение (6.50). Долгое время эта модель применялась при сополимер

Влияние температуры и давления на радикальную сополимеризацию
  Влияние температуры на скорость и степень сополимеризации аналогично го-мополимеризации (разд. 5.1.4). Исключения могут быть связаны с сополимериза-цией, осложненной деполимеризацие

Чередующаяся сополимеризация
  При сополимеризации электроноакцепторных (А) и электронодонорных (D) мономеров довольно часто образуются сополимеры с регулярным или близким к регулярному чередованием мономерных зв

Влияние реакционной среды
  Вопреки существовавшему довольно долго после завершения количественной теории сополимеризации мнению, реакционная среда может оказывать существенное влияние на состав и структуру со

Ка i ионная сополимеризация
  При катионной сополимеризации обычно r1 > 1, r2 < 1 (или наоборот), а произведение r1·r2 близко к единице, но часто превышает этот

Анионная сополимеризация
  В анионной сополимеризации более активны мономеры с электроноак-цепторными заместителями:   акрилонитрил > (мет)акриловые эфиры > стирол > изопрен, б

Сополимеризация на катализаторах Циглера-Натта
  Сополимеризация с использованием катализаторов Циглера-Натта приводит к статистическим сополимерам. Обычно ряды активности мономеров в гомополимеризации и сополимеризации совпадают:

Влияние соседних звеньев
  Согласно принципу Флори, реакционная способность функциональных групп макромолекул не должна отличаться от реакционной способности тех же групп в низкомолекулярных соединениях. Таки

Макромолекулярные и надмолекулярные эффекты
  Гидрофобное взаимодействие. Если реакция проводится в водном растворе полимера, то на ее скорость может оказать влияние сродство между гидрофобными группами макромо

Высыхание красок
  Важное место среди полимеров, предназначенных для получения различного рода покрытий (красок), пленок и волокон, занимают полиэфиры. Сшивка полиэфиров осуществляется за счет ненасыщ

Вулканизация каучуков
  До настоящего времени сшивка полимеров диенов-1,3 в промышленном масштабе осуществляется путем вулканизации серой. Впервые этот процесс был осуществлен Гудьиром в 1839 г., однако ег

Отверждение эпоксидных смол
  Эпоксидные смолы образуются в результате реакции эпихлоргидрина с гидроксилсодержащими соединениями, например 2,2-дифенилолпропаном в щелочной среде. На первой стадии реакции образу

Деструкция полимеров
  При эксплуатации или хранении полимеры стареют, что проявляется в неблагоприятном изменении комплекса их свойств. Старение полимеров может быть следствием как физических процессов,

Термоокислительная деструкция. Горение
  Наиболее губительной для полимеров по своим последствиям является термоокислительная деструкция. Считается, что механизм окисления полимеров не отличается от хорошо изученного радик

Фотодеструкция. Фотоокисление
  Фотохимические превращения происходят в полимере под действием ультрафиолетового (180<λ<400нм) и видимого света (400<λ<800нм), если полимер содержит химические

Поливиниловый спирт
  В промышленности поливиниловый спирт получают алкоголизом поливинила цетата:  

Химические превращения целлюлозы
  Путем полимераналогичных превращений из целлюлозы получают три основных класса ценных полимерных материалов:  

Структурная модификация целлюлозы
  Гидратцеллюлоза аналогична по составу исходной целлюлозе, отличается от нее расположением звеньев и большей степенью гидратации полярных групп. Гидратцеллюлоза получается двумя мето

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги