рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Реализация процессов и потоков

Реализация процессов и потоков - раздел Образование, ОПЕРАЦИОННЫЕ СИСТЕМЫ, СРЕДЫ И ОБОЛОЧКИ   Процессы И Потоки Имеют Большее Значение И Являются Более Сло...

 

Процессы и потоки имеют большее значение и являются более сложными, чем за­дания и волокна. Процесс со­здается другим процессом при помощи вызова интерфейса Win32 CreateProcess. Этот вызов обращается (в режиме пользователя) к процедуре в динамической биб­лиотеке kernel32.dll, которая в несколько этапов создает процесс, используя при этом множество системных вызовов и других действий.

Создание потока также состоит из нескольких этапов. Сначала работающий процесс обращается к функции CreateThread, которая вызывает процедуру внутри kernel32.dll. Эта процедура вы­деляет в вызывающем процессе память для стека режима пользователя, а затем обращается к системному вызову NtCreateThread, чтобы создать объект потока для исполняющей системы, проинициализировать его, а также создать и проинициализировать блок управления потоком. Затем поток начинает работу с собственной инициализации.

Когда создается процесс или поток, исходному процессу возвращается дескрип­тор, который можно использовать для запуска, остановки, уничтожения и провер­ки созданного процесса или потока. Владелец дескриптора может передать его дру­гому процессу защищенным способом. Эта техника применяется, чтобы отладчики могли иметь полный контроль над управляемыми ими процессами.

В операционной системе Windows 2000 нет центрального потока планирования. Вместо этого, когда какой-либо поток не может более выполняться, этот поток сам переходит в режим ядра и запускает планировщика, чтобы определить, на какой поток переключиться.

Текущий поток выполняет программу планировщика при одном из следующих условий:

1) поток блокируется на семафоре, мьютексе, событии, операции ввода-выво­да и т. д;

2) поток сигнализирует каким-либо объектом (например, выполняет операцию up на семафоре);

3) истекает квант времени работающего потока.

В случае 1 поток уже работает в режиме ядра, чтобы выполнить операцию с объектом диспетчера или ввода-вывода. Возможно, он не может продолжать работу, поэтому он должен сохранить свой контекст, запустить программу плани­ровщика, чтобы выбрать своего преемника, и загрузить контекст этого потока, что­бы запустить его.

В случае 2 поток также находится в ядре. Однако после сигнализирования объектом он, определенно, может продолжать работу, так как эта операция никог­да не приводит к блокированию. Тем не менее поток должен запустить процедуру планировщика, чтобы посмотреть, нет ли среди готовых к работе потока с более высоким приоритетом. Если такой поток есть, происходит переключение на этот поток, так как операционная система Windows 2000 является системой с при­оритетным прерыванием (то есть переключение потока может произойти в любой момент, а не только тогда, когда у текущего потока закончится выделенный ему квант времени).

В случае 3 происходит эмулированное прерывание с передачей управления в ядро. При этом поток также запускает процедуру планировщика, чтобы опреде­лить, какой поток следует запустить после текущего потока. Если все остальные потоки в данный момент окажутся заблокированными, планировщик может про­должить выполнение текущего потока, выделив ему новый квант времени. В про­тивном случае происходит переключение потока.

Планировщик также вызывается при еще двух условиях:

1) завершается операция ввода-вывода;

2) истекает ожидание таймера.

В первом случае какой-нибудь поток, возможно, ожидал окончания этой опе­рации ввода-вывода и теперь может продолжить свою работу. Необходимо опре­делить, должен ли этот поток прервать выполнение текущего потока, так как по­токам не гарантируется минимальный рабочий интервал времени. Планировщик не запускается во время работы самой процедуры обработки прерываний (так как при этом прерывания могут оказаться запрещенными на слишком долгий срок). Вместо этого отложенный вызов процедуры устанавливается в очередь и вы­полняется немного позднее, после того как процедура обработки прерываний закончит свою работу. Во втором случае поток выполнил операцию down на сема­форе или блокировался на каком-либо другом объекте, но установленное время ожидания истекло. И в этом случае обработчик прерываний должен установить процедуру в очередь, чтобы она не была запущена во время работы обработчика преры­ваний. Если в результате тайм-аута поток оказался готовым к работе, будет запу­щен планировщик, и если ничего более важного в данный момент нет, будет вы­полнен отложенный вызов процедуры.

Теперь рассмотрим сам алгоритм планирования. Интерфейс Win32 API содержит два вызова, предоставляющих процессам возможность влиять на пла­нирование потоками. Алгоритм планирования в значительной степени определяется этими вызовами.

Во-первых, есть вызов SetPriorltyClass, устанавливающий класс приоритета всех потоков вызывающего процесса. К допустимым значениям при­оритета относятся: при­оритет реального времени, высокий при­оритет, при­оритет выше нормы, нормальный при­оритет, при­оритет ниже нормы и неработающий при­оритет.

Во-вторых, имеется вызов SetThreadPrlorlty, устанавливающий относительный приоритет некоторого потока (возможно, но не обязательно, потока, обращающе­гося к этому вызову) по сравнению с другими потоками данного процесса. При­оритет может иметь следующие значения: критичный ко времени при­оритет, самый высокий при­оритет, при­оритет выше нормы, нормальный при­оритет, при­оритет ниже нормы, самый низкий при­оритет и неработающий при­оритет. Таким образом, шесть классов процессов и семь классов потоков могут образовать 42 ком­бинации. Эта информация поступает на вход алгоритма планирования.

Планировщик работает следующим образом. В системе существует 32 уровня приоритета, пронумерованные от 0 до 31. 42 комбинации отображаются на эти 32 приоритета, определяя базовый приоритет потока. Кроме того, у каждого потока есть текущий приоритет, кото­рый может быть выше (но не ниже) базового приоритета.

Чтобы использовать эти приоритеты для планирования, система содержит мас­сив из 32 элементов, соответствующих приоритетам от 0 до 31. Каждый элемент массива указывает на начало списка готовых пото­ков с соответствующим приоритетом. Базовый алгоритм планирования состоит из процедуры сканирования массива от приоритета 31 до приоритета 0. Как только найден непустой элемент, выбирается поток в начале очереди и запускается на один квант времени. Когда квант истекает, поток направляется в конец очереди своего приоритета, а следующим выбирается поток в начале очереди. Другими сло­вами, когда есть несколько готовых потоков с наивысшим уровнем приоритета, они запускаются поочередно, получая каждый по одному кванту времени. Если гото­вых потоков нет, запускается бездействующий поток.

Следует отметить, что при планировании не учитывается, какому процессу принадлежит тот или иной поток. То есть планировщик не выбирает сначала про­цесс, а затем поток в этом процессе. Он смотрит только на потоки. Он даже не зна­ет, какой поток какому процессу принадлежит. На многопроцессорной системе каждый центральный процессор сам занимается планированием своих потоков при помощи массива приоритетов. Чтобы гарантировать, что в каждый момент времени лишь один центральный процессор работает с массивом, используется спин-блокировка.

В системе Windows 2000 Professional длительность кванта по умолчанию равна 20 мс; на однопроцессорных серверах его значение равно 120 мс; на многопроцессорных системах используют­ся различные другие варианты в зависимости от частоты процессора. Более ко­роткий квант улучшает работу интерактивных процессов, тогда как более длин­ный квант снижает количество переключений контекста и тем самым увеличивает производительность. Значения по умолчанию при желании могут быть увеличены в 2, 4 или 6 раз.

Последняя модификация алгоритма планирования заключается в том, что когда окно становится окном переднего плана, все его потоки получают более длительные кванты времени. Величина прибавки интервала времени хранится в системном реестре. Таким образом, поток получает больше процессорного вре­мени, и, соответственно, достигается лучшее обслуживание для окна, перемещен­ного на передний план.

– Конец работы –

Эта тема принадлежит разделу:

ОПЕРАЦИОННЫЕ СИСТЕМЫ, СРЕДЫ И ОБОЛОЧКИ

Омский государственный институт сервиса... Кафедра высшей математики и информатики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Реализация процессов и потоков

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятия вычислительного процесса и ресурса
  Понятие «вычислительный процесс» (или просто – процесс) является одним из основных при рассмотрении операционных систем. Под

Планирование процессов
  Важнейшей частью операционной системы, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами. Для опе

Межпроцессное взаимодействие
  Существенное значение имеет возможность взаимодействия процессов между собой. Например, один процесс может передавать данные другому процессу, или несколько процессов могут обрабаты

Понятия потока («нити») и многопоточности
  Когда говорят о процессах, то тем самым хотят отметить, что операци­онная система поддерживает их обособленность: у каждого процесса имеется свое виртуальное адресное пространство,

Управление памятью
  Память является важнейшим ресурсом, требующим тщательного управления со стороны операционной системы. Распределению подлежит вся оперативная память, не занятая операционной с

Управление вводом-выводом
  Одной из главных функций ОС является управление всеми устройствами ввода-выводаВМ. ОС должна передавать устройствам команды, перехватывать прерывания и обрабатывать

Управление файлами и файловая система
  Под файлом обычно понимают набор данных, организованных в виде совокупности записей одинаковой структуры. Для управления этими дан­ными создаются соответству

Управление процессами и ресурсами в автономных многопроцессорных вычислительных машинах
  3.1. Реализация операционных систем многопроцессорных вычислительных машин   В предыдущих разделах рассматривались вопросы реализации ОС, функционирующих на а

Планирование и синхронизация в многопроцессорных вычислительных машинах
  На однопроцессорной ВМ планирование одномерно. Единственный вопрос, на который должен быть каждый раз получен ответ, – какой процесс должен быть запущен следующим? На мультипроцессо

И ресурсами в многомашинных вычислительных системах
  Одним из эффективнейших направлений развития вычислитель-ной техники стало построение так называемых многомашинных вычислительных систем (далее – ММВС

Понятия сетевой и распределенной операционных систем
  Операционные системы ММВС распределенного типа (то есть распределенных вычислительных систем – вычислительных сетей) обычно называют «сетевыми ОС». В

Операционных сис­тем
  Наиболее удачным (по современным меркам) способом, с помо­щью которого распределенная система может достичь определенного уровня однородности, несмотря на различие аппаратного обесп

Основные принципы построения операционных систем
Одним из наиболее важных принципов построения ОС является принцип модульности. Под модулемоперационной системы в общем случае понимают функционально законченный элеме

Операционных систем
Для удовлетворения жестких требований, предъявляемых к современной ОС, большое значение имеет ее структурное построение. Операционные системы прошли длительный путь развития от монолитных систем до

Принципы построения системных и прикладных программных интерфейсов
  Операционная система всегда выступает как интерфейс между аппаратурой машины и пользователем с его задачами. Под интерфейсами операционных систем понимают специальные системн

Операционные системы разных этапов разработки вычислительных машин
Зарождение прообразов операционных систем в современном их толковании относят к периоду разработки в середине 1950-х годов вычислительных машин на полупроводниковой элементной базе (так называемого

Операционных систем UNIX
  История операционной системы UNIX началась в 1969 году с совместного проекта Массачусетского технологического института, исследовательской лаборатории Bell Labs и корпорации General

Операционных систем семейства Windows
  Особое значение в истории и сегодняшнем дне операционных систем имеет семейство продуктов Windows корпорации Microsoft как наиболее популярных ОС для персональных компьютеров и сете

Общие представления
Операционная система UNIX представляет собой интерактивную систему, раз­работанную для одновременной поддержки нескольких процессов и нескольких пользователей. Она была разработана программистами и

Интерфейсы системы UNIX
Операционную систему UNIX можно рассматривать в виде некоторой пирамиды. У основания пирамиды располагается аппаратное обеспечение, состоящее из цен­трального процессора, памяти, дисков, терминалов

Оболочка и утилиты системы UNIX
У многих версий системы UNIX имеется графический интерфейс пользователя, схожий с популярными интерфейсами, примененными на компьютере Macintosh и впоследствии в системе Windows. Однако истинные пр

Структура ядра системы UNIX
  Нижний уровень ядра состоит из драйверов устройств и процедуры диспетче­ризации процессов. Все драйверы системы UNIX делятся на два класса: драйверы символьных устройств и драйверы

Реализация процессов в UNIX
  У каждого процесса в системе UNIX есть пользовательская часть, в которой работает программа пользователя. Однако когда один из потоков обращается к системному вызову, происходит эму

Планирование в системе UNIX
  Поскольку UNIX всегда была многозадачной системой, ее алгоритм планирования с самого начала развития системы разрабатывался так, чтобы обеспечить хорошую реакцию в ин­терактивных пр

Реализация управления памятью в UNIX
  До версии 3BSD большинство систем UNIX основывались на свопинге (подкач­ке), работавшем следующим образом. Когда загружалось больше процессов, чем могло поместиться в памяти,

Реализация ввода-вывода в системе UNIX
  Ввод-вывод в операционной системе UNIX реализуется набором драйверов уст­ройств, по одному для каждого типа устройств. Функция драйвера заключается в изолировании остальной части си

Потоки данных в UNIX
  Так как символьные специальные файлы имеют дело с символьными потоками, а не перемещают блоки данных между памятью и диском, они не пользуются бу­ферным кэшем. Вместо этого в первых

Реализация файловой системы Berkeley Fast
Приведенное выше описание объясняет принципы работы классической файло­вой системы UNIX. Теперь познакомимся с усовершенствованиями этой системы, реализованными в версии Berkeley. Во-первых, были р

Реализация файловой системы Linux
Изначально в операционной системе Linux использовалась файловая система опе­рационной системы MINIX. Однако в системе MINIX длина имен файлов ограни­чивалась 14 символами (для совместимости с UNIX

Реализация файловой системы NFS
Файловая система NFS (Network File System – сетевая файловая система) корпо­рации Sun Microsystems, использующуюся на всех современных системах UNIX (а также на некоторых не-UNIX системах) для объе

Реализация безопасности в UNIX
Когда пользователь входит в систему, программа регистрации login (которая явля­ется SETUID root) запрашивает у пользователя его имя и пароль. Затем она хэширует пароль и ищет его в файле пар

Структура системы
Операционная система Windows 2000 состоит из двух основных частей: самой опе­рационной системы, работающей в режиме ядра, и подсистем окружения, работа­ющих в режиме пользователя. Ядро является тра

Реализация объектов
  Объекты представляют собой, вероятно, самое важное понятие операционной си­стемы Windows 2000. Они предоставляют однородный и непротиворечивый ин­терфейс ко всем системным ресурсам

Подсистемы окружения
Итак, операционная система Windows 2000 состоит из компонентов, работающих в режиме ядра, и компонентов, работающих в режиме пользователя. Выше были рассмотрены компоненты, работающие в режиме ядра

Межпроцессное взаимодействие
  Для общения друг с другом потоки могут использовать широкий спектр возмож­ностей, включая каналы, именованные каналы, почтовые ящики, вызов удаленной процедуры и совместно используе

Загрузка Windows 2000
  Прежде чем операционная система Windows 2000 сможет начать работу, она долж­на загрузиться. Процесс загрузки создает начальные процессы. С точки зрения аппаратного обеспечения, проц

Реализация управления памятью
В операционной системе Windows 2000 поддерживается подгружаемое по тре­бованию одинарное линейное 4-гигабайтное адресное пространство для каждого процесса. Сегментация в любой форме не поддерживает

Реализация ввода-вывода в Windows 2000
  Основная функция менеджера ввода-вывода за­ключается в создании каркаса, в котором могут работать различные устройства вво­да-вывода. Структуру каркаса образуют набор независимых от

Файловые системы типа FAT
Операционная система Windows 2000 кроме новой файловой системы NTFS, разработанной специально для Windows NT, поддерживает несколько устаревших файловых систем типа FAT операционной системы MS-DOS.

Файловая система типа NTFS
  Система NTFS (New Technology File System – файловая система новой технологии) представляет собой новую сложную файловую систему, разработанную специально для Windows NT и перене­сен

Реализация защиты в Windows 2000
  Защита в автономной системе Windows 2000 реализуется при помощи нескольких компонентов. Регистрацией в системе управляет программа winlogon, а аутентификацией занимаются I

Библиографический список
1. Андреев А. Г. и др. Microsoft Windows 2000 Server и Professio-nal / Под общ. ред. А.Н. Чекмарева и Д.Б. Вишнякова. – СПб.: БХВ – Петербург, 2001. – 1056 с.: ил. 2. Андр

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги