рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПРЯМОГО ИЗГИБА ПРИЗМАТИЧЕСКОГО СТЕРЖНЯ

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПРЯМОГО ИЗГИБА ПРИЗМАТИЧЕСКОГО СТЕРЖНЯ - раздел Образование, Введение и основные понятия. Метод сечений для определения внутренних усилий. Эпюры внутренних усилий при растяжении-сжатии и кручении Определено, Что Мерой Деформации Призматического Стержня При Прямом Чистом Из...

Определено, что мерой деформации призматического стержня при прямом чистом изгибе является кривизна нейтрального слоя. Можно показать, что с достаточной для инженерных расчетов точностью этим тезисом можно пользоваться и в случае прямого поперечного изгиба стержня. Однако для практических целей кроме кривизны необходимо определить вертикальные перемещения центров тяжести отдельных поперечных сечений — прогибов балки v, а иногда и углы поворота этих сечений (рис. 2). Вследствие гипотезы плоских сечений угол поворота сечения ( оказывается равным углу наклона касательной к изогнутой оси балки, который в силу малости

(1)

Тогда возникает геометрическая задача: составить уравнение для функции прогиба , зная закон изменения ее кривизны.

Рис.2. Расчетная схема определения перемещений при изгибе

 

Воспользуемся известным из дифференциальной геометрии выражением для кривизны в прямоугольных декартовых координатах:

(2)

Однако, учитывая, что в инженерной практике применяются достаточно жесткие балки, для которых наибольший прогиб f (рис.2) мал по сравнению с длиной (f / l << 1), а первая производная от прогиба имеет порядок

и, следовательно, величиной (dv / dz)2<<1, стоящей в знаменателе (2), можно пренебречь, выражение для кривизны упрощается

(3)

Тогда, подставив это выражение в полученную ранее связку кривизны и изгибающего мометна — , условившись что ось Oy направлена вверх и согласовав знаки и Мх, приходим к дифференциальному уравнению прямого изгиба балки

(4)

известному также как дифференциальное уравнение упругой кривой.

Если учесть точное выражение для кривизны по формуле (2), то точное уравнение упругой кривой

является нелинейным дифференциальным уравнением. Поэтому линейное дифференциальное уравнение, описывающее малые прогибы балки, иногда называют линеаризованным уравнением упругой кривой.

Решение уравнения получаем путем двукратного почленного интегрирования. При первом интегрировании получаем выражение

(5)

которое с учетом , дает также закон изменения углов поворота поперечных сечений по длине балки. Повторным интегрированием получаем функцию прогиба

(6)

Постоянные интегрирования С и D должны быть найдены из граничных условий.

Во всех приведенных выше уравнениях функция изгибающего момента Мх(г) предполагалась известной, что возможно лишь для статически определимых балок. Простейшие варианты статически определимых однопролетных балок и соответствующие граничные условия показаны на рис. 3. Условия, накладываемые на прогиб и угол поворота сечения, получили название кинематических граничных условий. Как видно, для шарнирно опертой балки требуется, чтобы прогиб на опорах v(0) =v(l) =0, а для консольной балки прогиб и угол поворота сечения в заделке

Рис.3. Примеры граничных условий: а) двухопорная, б) консольная балки

 

Дифференциальное уравнение неприменимо для расчета статически неопределимых балок, так как содержит неизвестный изгибающий момент Мx появившийся в результате двукратного интегрирования уравнения четвертого порядка

(7)

В этом уравнении нагрузка q известна, поэтому его можно получить, учитывая, что

При интегрировании уравнения необходимо задать четыре граничных условия (по два на каждом конце балки) в том числе так называемые силовые граничные условия — условия, накладываемые на силовые величины (изгибающий момент и поперечную силу), которые выражаются через производные от прогиба. Так как

а с учетом дифференциального соотношения Qy=dMx/dz, получаем

(8)

Вернемся к интегрированию уравнения второго порядка. Если имеется несколько участков, для которых правая часть уравнения исходного f(z)=Mx/EJx, содержит разные аналитические выражения, то интегрирование усложняется. На рис. 4 приведена эпюра Мx, содержащая п участков. Для каждого участка независимое интегрирование дает по две константы, а при п участках требуется определить 2n постоянных. Добавляя к двум граничным условиям на опорах 2(n—1) условия непрерывности и гладкости упругой кривой на границе; смежных участков, заключающиеся в равенстве прогибов v и углов поворота сечений dv/dz на этих границах

получим 2п граничных условий, необходимых для нахождения постоянных интегрирования.

Рис.4. Расчетная схема балки, содержащая n углов

 

Рекомендую для практики решения дифференциальных уравнений второго порядка воспользоваться системой входных тестов Т-4, приведенных в ПРИЛОЖЕНИИ.

Лекция № 22. Напряжения и деформации при кручении стержней кругового поперечного сечения

Кручением называется такой вид деформации, при котором в поперечном сечении стержня возникает лишь один силовой фактор — крутящий момент Мz. Крутящий момент по определению равен сумме моментов внутренних сил относительно продольной оси стержня Oz. Нормальные силы, параллельные оси Oz, вклада в крутящий момент не вносят. С силами, лежащими в плоскости поперечного сечения стержня (интенсивности этих сил — касательные напряжения и ) Мz связывает вытекающее из его определения уравнение равновесия статики (рис. 1)

Условимся считать Mz положительным, если со стороны отброшенной части стержня видим его направленным против часовой стрелки (рис. 2). Это правило проиллюстрировано на рис. 1 и в указанном соотношении, где крутящий момент Мz принят положительным. Численно крутящий момент равен сумме моментов внешних сил, приложенных к отсеченной части стержня, относительно оси Ог.

Рис.1. Связь крутящего момента с касательными напряжениями

 

Рис.2. Иллюстрация положительного и отрицательного крутящего момента

 

Рассмотрим кручение призматических стержней кругового поперечного сечения. Исследование деформаций упругого стержня с нанесенной на его поверхности ортогональной сеткой рисок (рис. 3) позволяет сформулировать следующие предпосылки теории кручения этого стержня:

  1. поперечные сечения остаются плоскими (выполняется гипотеза Бернулли);
  2. расстояния между поперечными сечениями не изменяются, следовательно ;
  3. контуры поперечных сечений и их радиусы не деформируются. Это означает, что поперечные сечения ведут себя как жесткие круговые пластинки, поворачивающиеся при деформировании относительно оси стержня Ог. Отсюда следует, что любые деформации в плоскости пластинки равны нулю, в том числе и ;
  4. материал стержня подчиняется закону Гука. Учитывая, что , из обобщенного закона Гука в форме получаем . Это означает, что в поперечных сечениях, стержня возникают лишь касательные напряжения , а вследствие закона парности касательных напряжений, равные им напряжения действуют и в сопряженных продольных сечениях. Следовательно напряженное состояние стержня — чистый сдвиг.

Рис.3. Иллюстрация кручения: а) исходное и б) деформированное состояния

 

Выведем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения. Как видно, поворот правого торцевого сечения относительно неподвижного левого на угол (назовем его углом закручивания стержня) вызывает поворот продольных волокон на угол (угол сдвига), поскольку на величину искажаются углы ортогональной сетки продольных и поперечных рисок модели.

Двумя смежными сечениями вырежем элемент стержня длиной dz и, поскольку нас интересуют деформации элемента, левое сечение его будем считать неподвижным (рис. 5). При повороте правого сечения на угол в соответствии с гипотезой о недеформируемости радиусов, правый конец волокна АВ (отстоящий от оси элемента на величину полярного радиуса ) будет перемещаться по дуге BB1, вызывая поворот волокна на угол сдвига

Обратим внимание на то, что в соответствии с рис. 5 и рис. 6, а сдвиг и связанное с ним касательное напряжение перпендикулярны радиусу . Определим , воспользовавшись законом Гука для чистого сдвига

(1)

 

Рис.5. Расчетная модель определения касательных напряжений

 

а) ортогональность и
Рис.6. Распределение касательных напряжений при кручении:

 

Здесь — погонный угол закручивания стержня, который остается пока неизвестным. Для его нахождения обратимся к условию статики, записав его в более удобной для данного случая форме (рис. 6, a)

(2)

Подставляя (1) в (2) и учитывая, что

где Jp—; полярный момент инерции поперечного сечения (для круга с диаметром d ), получаем

(3)

 

Рис.7. Распределение напряжений для кольцевого сечения

 

а) разрушение дерева, б) разрушение чугуна
Рис.8. Распределение исходных касательных и главных напряжений:

 

Подставляя выражение (3) в (1), получаем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения

(4)

Как видно из (4), сдвиги и касательные напряжения пропорциональны расстояний от оси стержня. Обратим внимание на структурные аналогии формул для нормальных напряжений чистого изгиба и касательных напряжений кручения.

Мерой деформации стержня при кручении является погонный угол закручивания стержня, определяемый по (3). Поскольку величина DJp стоит в знаменателе формулы и при заданной нагрузке (Mz через нее выражается) тем меньше, чем больше DJp, последнюю называют жесткостью поперечного сечения при кручении.

Пользуясь (3) для определения угла закручивания элемента длиной dz

найдем полный угол закручивания стержня длиной l

(5)

В случае, если по длине стержня Мz и DJp постоянны, получаем

когда эти величины кусочно-постоянны, то:

(6)

Отметим, что полученные формулы по структуре аналогичны формулам для деформаций при растяжении стержня.

Наибольшие касательные напряжения возникают у внешней поверхности стержня, т. е. при

где Wр — момент сопротивления при кручении или полярный момент сопротивления

.

Полярный момент сопротивления, стоящий в знаменателе для максимальных касательных напряжений, очевидно, является геометрической характеристикой сечения, а условие прочности стержня при кручении принимает вид

(7)

где — допускаемое напряжение на кручение.

Как показали эксперименты и точное решение этой задачи в теории упругости, все гипотезы, сформулированные ранее для стержня со сплошным круговым сечением, остаются справедливыми и для стержня кольцевого поперечного сечения (рис. 7). Поэтому все выведенные ранее формулы пригодны для расчета стержня кольцевого сечения с той лишь разницей, что полярный момент инерции определяется как разность моментов инерции кругов с диаметрами D и d

где , а момент сопротивления определяется по формуле

Учитывая линейный характер изменения касательных напряжений по радиусу (рис. 7) и связанное с этим лучшее использование материала, кольцевое сечение следует признать наиболее рациональным при кручении стержня. Коэффициент использования материала тем выше, чем меньше относительная толщина трубы.

Как отмечено ранее, напряженное состояние при кручении стержня — чистый сдвиг, являющийся частным случаем плоского напряженного состояния. На площадках, совпадающих с плоскостью поперечного сечения и на парных им площадках продольных сечений возникают экстремальные касательные напряжения max-min , а главные напряжения действуют на площадках, наклоненных.коси стержня под углами ; главное напряжение .

Особенности напряженного состояния при кручении нашли отражение в характере разрушения стержней. Так, разрушение стержня из дерева, плохо работающего на скалывание вдоль волокон, происходит от продольных трещин (рис. 8, a). Разрушение стержня из хрупкого металла (например, чугуна) происходит по винтовой линии, наклоненной к образующим под углом 45o, т. е. по траектории главного напряжения (рис. 8,б).

РАСЧЕТ ВАЛОВ

Рассмотрим расчет вала на прочность и жесткость. Пусть известна мощность W (кВт), передаваемая вращающимся с заданным числом оборотов в минуту (n) валом от источника мощности (например, двигателя) к ее потребителю (например, станку), а момент т, передаваемый валом, требуется найти, так как численно равный этому моменту крутящий момент необходим для расчета вала.

Если число оборотов вала в минуту п и соответствующая угловая скорость -1) постоянны, а Ф — угол поворота вала в данный момент времени t, то работа вращательного движения А=тФ. Тогда передаваемая валом мощность будет равна

Отсюда

кНм,

где учтено, что .

Если мощность подается на вал через ведущий шкив, а раздается потребителям через несколько ведомых шкивов, то соответственно определяются моменты на шкивах, а затем строится эпюра крутящих моментов. Расчет вала на прочность и жесткость ведется, очевидно, по max Mz.

Определение диаметра вала из условия прочности. Условие прочности при кручении вала имеет вид (7), где допускаемые напряжения принимаются пониженными по сравнению с допускаемыми напряжениями обычного статического расчета в связи с необходимостью учета наличия концентраторов напряжений (например, шпоночных канавок), переменного характера нагрузки и наличия наряду с кручением и изгиба вала.

Требуемое значение Wp=dз/16 получаем из условия (7), принимая в нем знак равенства

,

откуда получаем формулу для диаметра вала кругового сечения

(8)

Определение диаметра вала из условия жесткости. Условие жесткости состоит в наложении ограничения на погонный угол закручивания вала , так как недостаточно жесткие валы не обеспечивают устойчивой передачи мощности и подвержены сильным колебаниям:

(9)

Тогда, учитывая, что , для диаметра вала из условия жесткости имеем

(10)

Аналогично проводятся расчеты и для вала кольцевого поперечного сечения.

Лекция № 23. Практические примеры расчета на сдвиг. Заклепочные соединения.

– Конец работы –

Эта тема принадлежит разделу:

Введение и основные понятия. Метод сечений для определения внутренних усилий. Эпюры внутренних усилий при растяжении-сжатии и кручении

Метод сечений для определения внутренних усилий... Эпюры внутренних усилий при растяжении сжатии и кручении... Эпюры внутренних усилий при прямом изгибе...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПРЯМОГО ИЗГИБА ПРИЗМАТИЧЕСКОГО СТЕРЖНЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ ПРИ РАСТЯЖЕНИИ-СЖАТИИ
Растяжением или сжатием называется такой простой вид сопротивления, при котором внешние силы приложены вдоль продольной оси бруса, а в поперечном сечении его возникает только нормальная сила.

ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ ПРИ КРУЧЕНИИ
Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутр

ДИФФЕРЕНЦИАЛЬНЫЕ ЗАВИСИМОСТИ МЕЖДУ ВНУТРЕННИМИ УСИЛИЯМИ ПРИ ИЗГИБЕ
Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой (рис.2).

НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ. ТЕНЗОР НАПРЯЖЕНИЙ
Вектор напряженийpn является физическим объектом, имеющим длину, направление и точку приложения. В этом смысле он обладает векторными свойствами. Однако этому объекту присущи неко

ТЕНЗОР ДЕФОРМАЦИИ
Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ УПРУГОЙ ДЕФОРМАЦИИ
Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует с

МЕХАНИЧЕСКИЕ СОСТОЯНИЯ ДЕФОРМИРУЕМЫХ ТЕЛ
В упругом состоянии деформации обратимы, и вся энергия, затраченная на деформирование, при разгрузке возвращается (диссипация энергии отсутствует). Для любого твердого тела процесс деформиро

ДИАГРАММЫ УПРУГО-ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ
Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной ос

ПОСТАНОВКА ЗАДАЧ ТЕОРИИ НАДЕЖНОСТИ
Согласно ГОСТ 27.002—89 «Надежность в технике. Термины и определения» надежность конструкции есть свойство сохранять во времени способность к выполнению требуемых функций в заданных режимах.

РАСЧЕТНЫЕ НАГРУЗКИ, КОЭФФИЦИЕНТЫ ЗАПАСА
Условие прочности (1) записано через напряжения, которые вычисляются через внешние нагрузки, приложенные к конструкции. Пусть внешние нагрузки определены с точностью до одного параметра S, а

РАСЧЕТЫ ПО ДОПУСКАЕМЫМ НАГРУЗКАМ И ПО ДОПУСКАЕМЫМ НАПРЯЖЕНИЯМ
Если пренебречь случайным разбросом прочностных свойств материала конструкции, то расчетное и нормативное значения, а также среднее значение несущей способности R совпадают RP

НАПРЯЖЕНИЯ ПРИ РАСТЯЖЕНИИ (СЖАТИИ) ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ. РАСЧЕТ НА ПРОЧНОСТЬ
Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е. призматических стержней. Начн

ПОНЯТИЕ О КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ, ПРИНЦИП СЕН-ВЕНАНА
Даже для призматического стержня равномерное распределение напряжений по поперечному сечению не всегда имеет место. Так, отклонения от равномерного распределения напряжений наблюдаются в окрестност

ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ И ПЕРЕМЕЩЕНИЙ
Определим упругие деформации стержня предполагая, что изменение его длины при растяжении , называемое абсолютной продольной деформацией

Применение к статически определимым системам.
В предыдущем изложении методов расчета мы исходили из основного условия прочности . Это неравенство требует выбора размеров конструкции с та

Расчет статически неопределимых систем по способу допускаемых нагрузок.
Совсем другие результаты мы получим, если будем применять способ допускаемых нагрузок к статически неопределимым системам, стержни которых изготовлены из материала, обладающего способностью к больш

Подбор сечений с учетом собственного веса (при растяжении и сжатии).
При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета с

Деформации при действии собственного веса.
При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение

Вычисление моментов инерции и моментов сопротивления для простейших сечений.
Известно, что интеграл вида является моментом инерции сечения относительно нейтральной оси. Здесь

Общий способ вычисления моментов инерции сложных сечений.
При проверке прочности частей конструкций нам приходится встречаться с сечениями довольно сложной формы, для которых нельзя вычислить момент инерции таким простым путем, каким мы пользовались для п

Наибольшее и наименьшее значения центральных моментов инерции.
Как известно, центральные моменты инерции являются наименьшими из всех моментов относительно ряда параллельных осей. Найдем теперь крайние значения (максимум и минимум) для центральных мом

РАЦИОНАЛЬНЫЕ ФОРМЫ ПОПЕРЕЧНЫХ СЕЧЕНИЙ ПРИ ИЗГИБЕ
Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет мини

ПОНЯТИЕ О СОСТАВНЫХ БАЛКАХ
Работу составных балок проиллюстрируем на простом примере трехслойной балки прямоугольного поперечного сечения. Если слои между собой не связаны и силы трения между ними отсутствуют, то каждый из н

Понятие о сдвиге. Расчет заклепок на перерезывание.
Мы изучали, что при простом растяжении или простом сжатии две части стержня, разделенные наклонным сечением, стремятся не только оторваться друг от друга, но и сдвинуться одна относит

Изгиб балки при действии продольных и поперечных сил.
На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и п

Внецентренное сжатие или растяжение.
Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид дефор

Примем следующий порядок расчета.
1. Разлагаем все внешние силы на составляющие P1x, P2x,..., Pnx и P1y, P2y,..., Pny. 2. Строим эпюры изгиб

Подбор сечений балок равного сопротивления.
Все предыдущие расчеты относились к балкам постоянного сечения. На практике мы имеем часто дело с балками, поперечные размеры которых меняются по длине либо постепенно, либо резко. Ниже ра

Определение деформаций балок переменного сечения.
При определении прогибов и углов поворота для балок с переменным сечением надлежит иметь в виду, что жесткость такой балки является функцией от х. Поэтому дифференциальное уравнение изогнуто

Общие понятия.
К числу статически неопределимых балок может быть отнесена балка на упругом основании. Так называется балка, опирающаяся по всей своей длине (Рис.1) на упругое основание, оказывающее в каждой точке

Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р.
Наиболее просто решается задача об изгибе бесконечно длинной балки, нагруженной одной сосредоточенной силой (Рис.2). Помимо непосредственного практического значения решение этой задачи позволит пут

Постановка задачи.
Кроме рассмотренных способов вычисления прогибов и углов поворота сечений балок существует более общий метод, пригодный для определения деформаций любых упругих конструкций. Он основан на применени

Вычисление потенциальной энергии.
При вычислении потенциальной энергии будем предполагать, что деформации не только материала, но и всей конструкции, следуя закону Гука, пропорциональны нагрузкам, т. е. линейно с ними связан

Расчетная модель к теореме Кастильяно.
При переходе от состояния балки к состоянию все нагрузки Р опустятся, знач

Теорема Максвелла—Мора.
Прогиб балки в точке приложения сосредоточенной силы Р равен: аналогичное выражение мы имеем и для угла поворота

Метод Верещагина.
Способ Максвелла — Мора в значительной степени вытеснил на практике непосредственное применение теоремы Кастильяно. В справочниках обычно приводятся таблицы интегралов

Общие понятия и метод расчета.
До сих пор мы рассматривали только статически определимые балки, у которых три опорные реакции определялись из условий равновесия. Очень часто, по условиям работы конструкции, оказывается необходим

Способ сравнения деформаций.
Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом. Прогиб точки В

Выбор лишней неизвестной и основной системы.
В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В. Мы могли бы выбрать и момент . Соответственно изменилась бы основна

Общий план решения статически неопределимой задачи.
Таким образом, общий метод решения, статически неопределимых задач распадается на ряд отдельных этапов. В дух предыдущих лекциях приведены два варианта решения задачи: с лишней реакцией

Определение деформаций статически неопределимых балок.
После того, как определены опорные реакции, построены эпюры изгибающих моментов и поперечных сил, подобраны сечения статически неопределимой балки, определение ее деформаций ничем- не отличается от

Связи, накладываемые на систему. Степень статической неопределимости.
Для решения большинства статически неопределимых встречающихся на практике задач обозначенные приемы оказываются, однако, далеко не достаточными. Поэтому необходимо остановиться на более общих мето

Напряжения в сферических толстостенных сосудах.
На фиг. 547 изображен элемент, вырезанный из толщи стенки толстостенного сферического сосуда; внутренний радиус этого элемента равен r, а наружный

Диск равного сопротивления.
Получено, что, изменение напряжений и вдоль радиуса диска постоянной толщины весь

Формула Эйлера для определения критической силы.
Для нахождения критических напряжений надо вычислить критическую силу , т. е. наи

Влияние способа закрепления концов стержня.
Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выраж

Проверка сжатых стержней на устойчивость.
Ранее было отмечено, что для сжатых стержней должны быть произведены две проверки: на прочность на устойчивость

Основные характеристики цикла и предел усталости
  Рассмотрим вначале случай одноосного напряженного состояния. Закон изменения главного напряжения о во времени представлен кривой, показанной на рис. 6. Наибольшее

Влияние состояния поверхности и размеров детали на усталостную прочность
Так как при циклических напряжениях начало разрушения связано с образованием местной трещины, понятна та роль, которую играет в усталостной прочности детали состояние ее поверхности. Совершенно оче

Коэффициент запаса усталостной прочности и его определение
Построим диаграмму усталостной прочности и нанесем на ней рабочую точку цикла. Диаграмма строится, как это было показано выше, на основе заданных механических характеристик материала

Постановка задачи. Явление Резонанса.
До сих пор мы решали основную задачу сопротивления материалов, определяли размеры поперечных сечений частей конструкции и выбирали для них материал лишь при статическом действии нагрузок.

Влияние резонанса на величину напряжений.
Если на балке расположена машина с вращающимся грузом, имеющим эксцентриситет по отношению к оси вращения (Рис.1,). то  

Вычисление напряжений при колебаниях.
Упругая система, выведенная каким-либо путем из равновесия, приходит в колебательное движение. Колебания происходят около положения упругого равновесия, при котором в нагруженной системе имели мест

Учет массы упругой системы при колебаниях.
Если колеблющаяся система, несущая груз Q, обладает довольно значительной распределенной массой (число степеней свободы, следовательно, велико), то упрощенные расчеты, будут иметь уже значит

Основные положения
Явление удара получается в том случае, когда скорость рассматриваемой части конструкции или соприкасающихся с ней частей изменяется в очень короткий период времени. При забивке свай тяжелы

Общий прием вычисления динамического коэффициента при ударе.
Предположим, что очень жесткое тело А весом Q, деформацией которого можно пренебречь, падая с некоторой высоты H, ударяет по другому телу B, опирающемуся на упругую сист

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги